Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
World Academy of Sciences Journal
Join Editorial Board Propose a Special Issue
Print ISSN: 2632-2900 Online ISSN: 2632-2919
Journal Cover
March-April 2025 Volume 7 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-April 2025 Volume 7 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Single‑cell RNA sequencing data dimensionality reduction (Review)

  • Authors:
    • Vasileios L. Zogopoulos
    • Ioanna Tsotra
    • Demetrios A. Spandidos
    • Vassiliki A. Iconomidou
    • Ioannis Michalopoulos
  • View Affiliations / Copyright

    Affiliations: Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece, Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
    Copyright: © Zogopoulos et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 27
    |
    Published online on: January 20, 2025
       https://doi.org/10.3892/wasj.2025.315
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Single‑cell RNA sequencing (scRNA‑Seq) provides detailed insight into gene expression at the individual cell level, revealing hidden cell diversity. However, scRNA‑Seq data pose challenges due to high‑dimensionality and sparsity. High‑dimensionality stems from analysing numerous cells and genes, while sparsity arises from zero counts in gene expression data, known as dropout events. This necessitates robust data processing methods of the scRNA‑Seq gene counts, for meaningful interpretation. Dimensionality reduction techniques, such as principal component analysis, transform gene count data into lower‑dimensional spaces retaining biological information, aiding in downstream analyses, while dimensionality reduction‑based visualisation methods, such as t‑distributed stochastic neighbour embedding, and uniform manifold approximation and projection are used for cell or gene clustering. Deep learning techniques, such as variational autoencoders and generative adversarial networks compress data and generate synthetic gene expression profiles, augmenting datasets and improving utility in biomedical research. In recent years, the interest for scRNA‑Seq dimensionality reduction has markedly increased, not only leading to the development of a multitude of methods, but also to the integration of these approaches into scRNA‑Seq data processing pipelines. The present review aimed to list and explain, in layman's terms, the current popular dimensionality reduction methods, as well as include advancements and software package implementations of them.
View Figures

Figure 1

Figure 2

View References

1 

Wang Z, Gerstein M and Snyder M: RNA-Seq: A revolutionary tool for transcriptomics. Nat Rev Genet. 10:57–63. 2009.PubMed/NCBI View Article : Google Scholar

2 

Schena M, Shalon D, Davis RW and Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 270:467–470. 1995.PubMed/NCBI View Article : Google Scholar

3 

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, et al: mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 6:377–382. 2009.PubMed/NCBI View Article : Google Scholar

4 

Haque A, Engel J, Teichmann SA and Lonnberg T: A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9(75)2017.PubMed/NCBI View Article : Google Scholar

5 

Cock PJ, Fields CJ, Goto N, Heuer ML and Rice PM: The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 38:1767–1771. 2010.PubMed/NCBI View Article : Google Scholar

6 

Kivioja T, Vaharautio A, Karlsson K, Bonke M, Enge M, Linnarsson S and Taipale J: Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 9:72–74. 2011.PubMed/NCBI View Article : Google Scholar

7 

Satija R, Farrell JA, Gennert D, Schier AF and Regev A: Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 33:495–502. 2015.PubMed/NCBI View Article : Google Scholar

8 

Zogopoulos VL, Saxami G, Malatras A, Papadopoulos K, Tsotra I, Iconomidou VA and Michalopoulos I: Approaches in gene coexpression analysis in eukaryotes. Biology (Basel). 11(1019)2022.PubMed/NCBI View Article : Google Scholar

9 

Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC and Teichmann SA: Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 17(29)2016.PubMed/NCBI View Article : Google Scholar

10 

Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, et al: Massively parallel digital transcriptional profiling of single cells. Nat Commun. 8(14049)2017.PubMed/NCBI View Article : Google Scholar

11 

Wu Y and Zhang K: Tools for the analysis of high-dimensional single-cell RNA sequencing data. Nat Rev Nephrol. 16:408–421. 2020.PubMed/NCBI View Article : Google Scholar

12 

Qiu P: Embracing the dropouts in single-cell RNA-seq analysis. Nat Commun. 11(1169)2020.PubMed/NCBI View Article : Google Scholar

13 

Imoto Y, Nakamura T, Escolar EG, Yoshiwaki M, Kojima Y, Yabuta Y, Katou Y, Yamamoto T, Hiraoka Y and Saitou M: Resolution of the curse of dimensionality in single-cell RNA sequencing data analysis. Life Sci Alliance. 5(e202201591)2022.PubMed/NCBI View Article : Google Scholar

14 

Van der Maaten L and Hinton G: Visualizing data using t-SNE. J Mach Learn Res. 9:2008.

15 

Nanga S, Bawah AT, Acquaye BA, Billa MI, Baeta FD, Odai NA, Obeng SK and Nsiah AD: Review of dimension reduction methods. J Data Anal Inform Process. 09:189–231. 2021.

16 

Sarker IH: Machine learning: Algorithms, Real-world applications and research directions. SN Comput Sci. 2(160)2021.PubMed/NCBI View Article : Google Scholar

17 

Alpaydin E: Introduction to Machine Learning. MIT Press, Cambridge, Massachusetts, London, England, 2020.

18 

Okada H, Chung UI and Hojo H: Practical compass of Single-cell RNA-Seq Analysis. Curr Osteoporos Rep. 22:433–440. 2024.PubMed/NCBI View Article : Google Scholar

19 

Arora JK, Opasawatchai A, Poonpanichakul T, Jiravejchakul N, Sungnak W, Thailand D, Matangkasombut O, Teichmann SA, Matangkasombut P and Charoensawan V: Single-cell temporal analysis of natural dengue infection reveals skin-homing lymphocyte expansion one day before defervescence. iScience. 25(104034)2022.PubMed/NCBI View Article : Google Scholar

20 

Linderman GC: Dimensionality reduction of Single-cell RNA-Seq data. Methods Mol Biol. 2284:331–342. 2021.PubMed/NCBI View Article : Google Scholar

21 

Pearson K: LIII. On lines and planes of closest fit to systems of points in space. Lond Edinb Dubl Phil Mag. 2:559–572. 1901.

22 

Jolliffe IT: Principal Component Analysis. Springer, New York, NY, 2002.

23 

Jolliffe IT and Cadima J: Principal component analysis: A review and recent developments. Philos Trans A Math Phys Eng Sci. 374(20150202)2016.PubMed/NCBI View Article : Google Scholar

24 

Thorndike RL: Who belongs in the family? Psychometrika. 18:267–276. 1953.

25 

Tsuyuzaki K, Sato H, Sato K and Nikaido I: Benchmarking principal component analysis for large-scale single-cell RNA-sequencing. Genome Biol. 21(9)2020.PubMed/NCBI View Article : Google Scholar

26 

Ma S and Dai Y: Principal component analysis based methods in bioinformatics studies. Brief Bioinform. 12:714–722. 2011.PubMed/NCBI View Article : Google Scholar

27 

Hinton GE and Roweis S: Stochastic Neighbor Embedding. In: Advances in Neural Information Processing Systems. Becker S, Thrun S and Obermayer K (eds.) MIT Press, Cambridge, MA, pp857-864, 2003.

28 

McInnes L, Healy J and Melville J: Umap: Uniform manifold approximation and projection for dimension reduction arXiv: 1802.03426, 2018.

29 

Slovin S, Carissimo A, Panariello F, Grimaldi A, Bouche V, Gambardella G and Cacchiarelli D: Single-cell RNA sequencing analysis: A Step-by-Step overview. Methods Mol Biol. 2284:343–365. 2021.PubMed/NCBI View Article : Google Scholar

30 

Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, Silverstein MC and Ma'ayan A: Massive mining of publicly available RNA-seq data from human and mouse. Nat Commun. 9(1366)2018.PubMed/NCBI View Article : Google Scholar

31 

Kobak D and Linderman GC: Initialization is critical for preserving global data structure in both t-SNE and UMAP. Nat Biotechnol. 39:156–157. 2021.PubMed/NCBI View Article : Google Scholar

32 

Hao Y, Stuart T, Kowalski MH, Choudhary S, Hoffman P, Hartman A, Srivastava A, Molla G, Madad S, Fernandez-Granda C and Satija R: Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol. 42:293–304. 2024.PubMed/NCBI View Article : Google Scholar

33 

Goodfellow I, Bengio Y and Courville A: Deep Learning. An MIT Press book. https://www.deeplearningbook.org/.

34 

Ding J, Condon A and Shah SP: Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat Commun. 9(2002)2018.PubMed/NCBI View Article : Google Scholar

35 

Kramer MA: Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37:233–243. 1991.

36 

Eraslan G, Simon LM, Mircea M, Mueller NS and Theis FJ: Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun. 10(390)2019.PubMed/NCBI View Article : Google Scholar

37 

Agarwal D, Wang J and Zhang NR: Data denoising and Post-denoising corrections in single cell RNA sequencing. Statistical Science. 35:112–128. 2020.

38 

Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, Murray JI, Raj A, Li M and Zhang NR: SAVER: Gene expression recovery for single-cell RNA sequencing. Nat Methods. 15:539–542. 2018.PubMed/NCBI View Article : Google Scholar

39 

Li WV and Li JJ: An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat Commun. 9(997)2018.PubMed/NCBI View Article : Google Scholar

40 

Kingma DP and Welling M: Auto-encoding variational bayes. arXiv, 2013.

41 

Gronbech CH, Vording MF, Timshel PN, Sonderby CK, Pers TH and Winther O: scVAE: Variational auto-encoders for single-cell gene expression data. Bioinformatics. 36:4415–4422. 2020.PubMed/NCBI View Article : Google Scholar

42 

Pan W, Long F and Pan J: ScInfoVAE: Interpretable dimensional reduction of single cell transcription data with variational autoencoders and extended mutual information regularization. BioData Min. 16(17)2023.PubMed/NCBI View Article : Google Scholar

43 

Hinton GE and Salakhutdinov RR: Reducing the dimensionality of data with neural networks. Science. 313:504–507. 2006.PubMed/NCBI View Article : Google Scholar

44 

Erfanian N, Heydari AA, Feriz AM, Ianez P, Derakhshani A, Ghasemigol M, Farahpour M, Razavi SM, Nasseri S, Safarpour H and Sahebkar A: Deep learning applications in single-cell genomics and transcriptomics data analysis. Biomed Pharmacother. 165(115077)2023.PubMed/NCBI View Article : Google Scholar

45 

Bica I, Andres-Terre H, Cvejic A and Lio P: Unsupervised generative and graph representation learning for modelling cell differentiation. Sci Rep. 10(9790)2020.PubMed/NCBI View Article : Google Scholar

46 

Rahman MA, Tutul AA, Sharmin M and Bayzid MS: BEENE: Deep learning-based nonlinear embedding improves batch effect estimation. Bioinformatics. 39(btad479)2023.PubMed/NCBI View Article : Google Scholar

47 

Chen RTQ, Li X, Grosse R and Duvenaud D: Isolating sources of disentanglement in VAEs. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems Curran Associates Inc., Montréal Canada, pp2615-2625, 2018.

48 

Eraslan G, Drokhlyansky E, Anand S, Fiskin E, Subramanian A, Slyper M, Wang J, Van Wittenberghe N, Rouhana JM, Waldman J, et al: Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science. 376(eabl4290)2022.PubMed/NCBI View Article : Google Scholar

49 

Koutrouli M, Nastou K, Piera Lindez P, Bouwmeester R, Rasmussen S, Martens L and Jensen LJ: FAVA: High-quality functional association networks inferred from scRNA-seq and proteomics data. Bioinformatics. 40(btae010)2024.PubMed/NCBI View Article : Google Scholar

50 

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S, et al: The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51:D638–D646. 2023.PubMed/NCBI View Article : Google Scholar

51 

Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2 MIT Press, Montreal, Canada, pp2672-2680, 2014.

52 

Lan L, You L, Zhang Z, Fan Z, Zhao W, Zeng N, Chen Y and Zhou X: Generative Adversarial Networks and Its Applications in Biomedical Informatics. Front Public Health. 8(164)2020.PubMed/NCBI View Article : Google Scholar

53 

Lacan A, Sebag M and Hanczar B: GAN-based data augmentation for transcriptomics: Survey and comparative assessment. Bioinformatics. 39:i111–i120. 2023.PubMed/NCBI View Article : Google Scholar

54 

Vinas R, Andres-Terre H, Lio P and Bryson K: Adversarial generation of gene expression data. Bioinformatics. 38:730–737. 2022.PubMed/NCBI View Article : Google Scholar

55 

Marouf M, Machart P, Bansal V, Kilian C, Magruder DS, Krebs CF and Bonn S: Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. Nat Commun. 11(166)2020.PubMed/NCBI View Article : Google Scholar

56 

Lall S, Ray S and Bandyopadhyay S: LSH-GAN enables in-silico generation of cells for small sample high dimensional scRNA-seq data. Commun Biol. 5(577)2022.PubMed/NCBI View Article : Google Scholar

57 

Zhu X, Meng S, Li G, Wang J and Peng X: AGImpute: Imputation of scRNA-seq data based on a hybrid GAN with dropouts identification. Bioinformatics. 40(btae068)2024.PubMed/NCBI View Article : Google Scholar

58 

Chari T and Pachter L: The specious art of single-cell genomics. PLoS Comput Biol. 19(e1011288)2023.PubMed/NCBI View Article : Google Scholar

59 

Chollet F: Keras. https://github.com/fchollet/keras; https://keras.io.

60 

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, et al: TensorFlow: Large-scale machine learning on heterogeneous distributed Systems. Distributed Parallel Cluster Computing: 16 Mar, 2016.

61 

Mittal S and Vaishay S: A survey of techniques for optimizing deep learning on GPUs. J Systems Architecture. 99(101635)2019.

62 

Kim J and Park H: Limited discriminator GAN using explainable AI model for overfitting problem. ICT Express. 9:241–246. 2023.

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Zogopoulos VL, Tsotra I, Spandidos DA, Iconomidou VA and Michalopoulos I: Single‑cell RNA sequencing data dimensionality reduction (Review). World Acad Sci J 7: 27, 2025.
APA
Zogopoulos, V.L., Tsotra, I., Spandidos, D.A., Iconomidou, V.A., & Michalopoulos, I. (2025). Single‑cell RNA sequencing data dimensionality reduction (Review). World Academy of Sciences Journal, 7, 27. https://doi.org/10.3892/wasj.2025.315
MLA
Zogopoulos, V. L., Tsotra, I., Spandidos, D. A., Iconomidou, V. A., Michalopoulos, I."Single‑cell RNA sequencing data dimensionality reduction (Review)". World Academy of Sciences Journal 7.2 (2025): 27.
Chicago
Zogopoulos, V. L., Tsotra, I., Spandidos, D. A., Iconomidou, V. A., Michalopoulos, I."Single‑cell RNA sequencing data dimensionality reduction (Review)". World Academy of Sciences Journal 7, no. 2 (2025): 27. https://doi.org/10.3892/wasj.2025.315
Copy and paste a formatted citation
x
Spandidos Publications style
Zogopoulos VL, Tsotra I, Spandidos DA, Iconomidou VA and Michalopoulos I: Single‑cell RNA sequencing data dimensionality reduction (Review). World Acad Sci J 7: 27, 2025.
APA
Zogopoulos, V.L., Tsotra, I., Spandidos, D.A., Iconomidou, V.A., & Michalopoulos, I. (2025). Single‑cell RNA sequencing data dimensionality reduction (Review). World Academy of Sciences Journal, 7, 27. https://doi.org/10.3892/wasj.2025.315
MLA
Zogopoulos, V. L., Tsotra, I., Spandidos, D. A., Iconomidou, V. A., Michalopoulos, I."Single‑cell RNA sequencing data dimensionality reduction (Review)". World Academy of Sciences Journal 7.2 (2025): 27.
Chicago
Zogopoulos, V. L., Tsotra, I., Spandidos, D. A., Iconomidou, V. A., Michalopoulos, I."Single‑cell RNA sequencing data dimensionality reduction (Review)". World Academy of Sciences Journal 7, no. 2 (2025): 27. https://doi.org/10.3892/wasj.2025.315
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team