|
1
|
Tian YE, Cropley V, Maier AB,
Lautenschlager NT, Breakspear M and Zalesky A: Heterogeneous aging
across multiple organ systems and prediction of chronic disease and
mortality. Nat Med. 29:1221–1231. 2023.PubMed/NCBI View Article : Google Scholar
|
|
2
|
López-Otín C, Blasco MA, Partridge L,
Serrano M and Kroemer G: The hallmarks of aging. Cell.
153:1194–1217. 2013.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Campisi J and d'Adda Di Fagagna F:
Cellular senescence: When bad things happen to good cells. Nat Rev
Mol Cell Biol. 8:729–740. 2007.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Schmauck-Medina T, Molière A, Lautrup S,
Zhang J, Chlopicki S, Madsen HB, Cao S, Soendenbroe C, Mansell E,
Vestergaard MB, et al: New hallmarks of ageing: A 2022 Copenhagen
ageing meeting summary. Aging (Albany NY). 14:6829–6839.
2022.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Chakravarti D, LaBella KA and DePinho RA:
Telomeres: history, health, and hallmarks of aging. Cell.
184:306–322. 2021.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Tenchov R, Sasso JM, Wang X and Zhou QA:
Aging hallmarks and progression and age-related diseases: A
landscape view of research advancement. ACS Chem Neurosci. 15:1–30.
2024.PubMed/NCBI View Article : Google Scholar
|
|
7
|
McHugh D and Gil J: Senescence and aging:
Causes, consequences, and therapeutic avenues. J Cell Biol.
217:65–77. 2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Zhu Y, Liu X, Ding X, Wang F and Geng X:
Telomere and its role in the aging pathways: Telomere shortening,
cell senescence and mitochondria dysfunction. Biogerontology.
20:1–16. 2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
de Lange T: Shelterin: The protein complex
that shapes and safeguards human telomeres. Genes Dev.
19:2100–2110. 2005.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Marioni RE, Harris SE, Shah S, McRae AF,
von Zglinicki T, Martin-Ruiz C, Wray NR, Visscher PM and Deary IJ:
The epigenetic clock and telomere length are independently
associated with chronological age and mortality. Int J Epidemiol.
45:424–432. 2016.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Fragkiadaki P, Nikitovic D, Kalliantasi K,
Sarandi E, Thanasoula M, Stivaktakis PD, Nepka C, Spandidos DA,
Tosounidis T and Tsatsakis A: Telomere length and telomerase
activity in osteoporosis and osteoarthritis. Exp Ther Med.
19:1626–1632. 2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Kakridonis F, Pneumatikos SG, Vakonaki E,
Berdiaki A, Tzatzarakis MN, Fragkiadaki P, Spandidos DA, Baliou S,
Ioannou P, Hatzidaki E, et al: Telomere length as a predictive
biomarker in osteoporosis (Review). Biomed Rep.
19(87)2023.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Sampson MJ, Winterbone MS, Hughes JC,
Dozio N and Hughes DA: Monocyte telomere shortening and oxidative
DNA damage in type 2 diabetes. Diabetes Care. 29:283–289.
2006.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Fitzpatrick AL, Kronmal RA, Gardner JP,
Psaty BM, Jenny NS, Tracy RP, Walston J, Kimura M and Aviv A:
Leukocyte telomere length and cardiovascular disease in the
cardiovascular health study. Am J Epidemiol. 165:14–21.
2007.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Wiemann SU, Satyanarayana A, Tsahuridu M,
Tillmann HL, Zender L, Klempnauer J, Flemming P, Franco S, Blasco
MA, Manns MP and Rudolph KL: Hepatocyte telomere shortening and
senescence are general markers of human liver cirrhosis. FASEB J.
16:935–942. 2002.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Shay JW: Role of telomeres and telomerase
in aging and cancer. Cancer Discov. 6:584–593. 2016.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Vasilopoulos E, Fragkiadaki P, Kalliora C,
Fragou D, Docea AO, Vakonaki E, Tsoukalas D, Calina D, Buga AM,
Georgiadis G, et al: The association of female and male infertility
with telomere length (Review). Int J Mol Med. 44:375–389.
2019.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Vakonaki E, Tsiminikaki K, Plaitis S,
Fragkiadaki P, Tsoukalas D, Katsikantami I, Vaki G, Tzatzarakis MN,
Spandidos DA and Tsatsakis AM: Common mental disorders and
association with telomere length. Biomed Rep. 8:111–116.
2018.PubMed/NCBI View Article : Google Scholar
|
|
19
|
de Lange T: Shelterin-mediated telomere
protection. Annu Rev Genet. 52:223–247. 2018.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Smogorzewska A, van Steensel B, Bianchi A,
Oelmann S, Schaefer MR, Schnapp G and de Lange T: Control of human
telomere length by TRF1 and TRF2. Mol Cell Biol. 20:1659–1668.
2000.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Yang Z, Takai KK, Lovejoy CA and de Lange
T: Break-induced replication promotes fragile telomere formation.
Genes Dev. 34:1392–1405. 2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Blackburn EH: Telomeres: Structure and
synthesis. J Biol Chem. 265:5919–5921. 1990.PubMed/NCBI
|
|
23
|
Blackburn EH: Telomeres and telomerase:
Their mechanisms of action and the effects of altering their
functions. FEBS Lett. 579:859–862. 2005.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Bandaria JN, Qin P, Berk V, Chu S and
Yildiz A: Shelterin protects chromosome ends by compacting
telomeric chromatin. Cell. 164:735–746. 2016.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Fumagalli M, Rossiello F, Clerici M,
Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V,
Beausejour CM, et al: Telomeric DNA damage is irreparable and
causes persistent DNA-damage-response activation. Nat Cell Biol.
14:355–365. 2012.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Baird DM: Telomere dynamics in human
cells. Biochimie. 90:116–121. 2008.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Olovnikov AM: A theory of marginotomy. The
incomplete copying of template margin in enzymic synthesis of
polynucleotides and biological significance of the phenomenon. J
Theor Biol. 41:181–190. 1973.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Radak Z and Boldogh I:
8-Oxo-7,8-dihydroguanine: Links to gene expression, aging, and
defense against oxidative stress. Free Radic Biol Med. 49:587–596.
2010.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Dabrowska A, Venero JL, Iwasawa R, Hankir
MK, Rahman S, Boobis A and Hajji N: PGC-1alpha controls
mitochondrial biogenesis and dynamics in lead-induced
neurotoxicity. Aging (Albany NY). 7:629–647. 2015.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Fang EF, Scheibye-Knudsen M, Chua KF,
Mattson MP, Croteau DL and Bohr VA: Nuclear DNA damage signalling
to mitochondria in ageing. Nat Rev Mol Cell Biol. 17:308–321.
2016.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Fang EF, Scheibye-Knudsen M, Brace LE,
Kassahun H, SenGupta T, Nilsen H, Mitchell JR, Croteau DL and Bohr
VA: Defective mitophagy in XPA via PARP-1 hyperactivation and
NAD(+)/SIRT1 reduction. Cell. 157:882–896. 2014.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Armanios M: The role of telomeres in human
disease. Annu Rev Genomics Hum Genet. 23:363–381. 2022.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Gorgoulis V, Adams PD, Alimonti A, Bennett
DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K,
Ferbeyre G, et al: Cellular senescence: Defining a path forward.
Cell. 179:813–827. 2019.PubMed/NCBI View Article : Google Scholar
|
|
34
|
d'Adda di Fagagna F, Reaper PM,
Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G,
Carter NP and Jackson SP: A DNA damage checkpoint response in
telomere-initiated senescence. Nature. 426:194–198. 2003.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Pech MF, Garbuzov A, Hasegawa K, Sukhwani
M, Zhang RJ, Benayoun BA, Brockman SA, Lin S, Brunet A, Orwig KE
and Artandi SE: High telomerase is a hallmark of undifferentiated
spermatogonia and is required for maintenance of male germline stem
cells. Genes Dev. 29:2420–2434. 2015.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Artandi SE and DePinho RA: Telomeres and
telomerase in cancer. Carcinogenesis. 31:9–18. 2010.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Lee HW, Blasco MA, Gottlieb GJ, Horner JW,
Greider CW and DePinho RA: Essential role of mouse telomerase in
highly proliferative organs. Nature. 392:569–574. 1998.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Andreu-Sánchez S, Aubert G,
Ripoll-Cladellas A, Henkelman S, Zhernakova DV, Sinha T,
Kurilshikov A, Cenit MC, Jan Bonder M, Franke L, et al: Genetic,
parental and lifestyle factors influence telomere length. Commun
Biol. 5(565)2022.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Navarro C, Salazar J, Díaz MP, Chacin M,
Santeliz R, Vera I, D Marco L, Parra H, Bernal MC, Castro A, et al:
Intrinsic and environmental basis of aging: A narrative review.
Heliyon. 9(e18239)2023.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Tsoukalas D, Fragkiadaki P, Docea A,
Alegakis AK, Sarandi E, Vakonaki E, Salataj E, Kouvidi E, Nikitovic
D, Kovatsi L, et al: Association of nutraceutical supplements with
longer telomere length. Int J Mol Med. 44:218–226. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Baliou S, Ioannou P, Apetroaei MM,
Vakonaki E, Fragkiadaki P, Kirithras E, Tzatzarakis MN, Arsene AL,
Docea AO and Tsatsakis A: The impact of the mediterranean diet on
telomere biology: implications for disease management-A narrative
review. Nutrients. 16(2525)2024.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Wade KH, Richmond RC and Davey Smith G:
Physical activity and longevity: How to move closer to causal
inference. Br J Sports Med. 52:890–891. 2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Bennie JA, Shakespear-Druery J and De
Cocker K: Muscle-strengthening exercise epidemiology: A new
frontier in chronic disease prevention. Sports Med Open.
6(40)2020.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Rebelo-Marques A, De Sousa Lages A,
Andrade R, Ribeiro CF, Mota-Pinto A, Carrilho F and
Espregueira-Mendes J: Aging hallmarks: The benefits of physical
exercise. Front Endocrinol (Lausanne). 9(258)2018.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Semeraro MD, Smith C, Kaiser M, Levinger
I, Duque G, Gruber HJ and Herrmann M: Physical activity, a
modulator of aging through effects on telomere biology. Aging
(Albany NY). 12:13803–13823. 2020.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Ekelund U, Tarp J, Steene-Johannessen J,
Hansen BH, Jefferis B, Fagerland MW, Whincup P, Diaz KM, Hooker SP,
Chernofsky A, et al: Dose-response associations between
accelerometry measured physical activity and sedentary time and all
cause mortality: Systematic review and harmonised meta-analysis.
BMJ. 366(l4570)2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Vyas CM, Ogata S, Reynolds CF, Mischoulon
D, Chang G, Cook NR, Manson JE, Crous-Bou M, De Vivo I and Okereke
OI: Telomere length and its relationships with lifestyle and
behavioural factors: Variations by sex and race/ethnicity. Age
Ageing. 50:838–846. 2021.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Valente C, Andrade R, Alvarez L,
Rebelo-Marques A, Stamatakis E and Espregueira-Mendes J: Effect of
physical activity and exercise on telomere length: Systematic
review with meta-analysis. J Am Geriatr Soc. 69:3285–3300.
2021.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Buttet M, Bagheri R, Ugbolue UC, Laporte
C, Trousselard M, Benson A, Bouillon-Minois JB and Dutheil F:
Effect of a lifestyle intervention on telomere length: A systematic
review and meta-analysis. Mech Ageing Dev.
206(111694)2022.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Schellnegger M, Lin AC, Hammer N and
Kamolz LP: Physical activity on telomere length as a biomarker for
aging: A systematic review. Sports Med Open. 8(111)2022.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Song S, Lee E and Kim H: Does exercise
affect telomere length? A systematic review and meta-analysis of
Randomized controlled trials. Medicina (Kaunas).
58(242)2022.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Sánchez-González JL, Sánchez-Rodríguez JL,
Varela-Rodríguez S, González-Sarmiento R, Rivera-Picón C,
Juárez-Vela R, Tejada-Garrido CI, Martín-Vallejo J and
Navarro-López V: Effects of physical exercise on telomere length in
healthy adults: Systematic review, meta-analysis, and
meta-regression. JMIR Public Health Surveill.
10(e46019)2024.PubMed/NCBI View
Article : Google Scholar
|
|
53
|
Cherkas LF, Hunkin JL, Kato BS, Richards
JB, Gardner JP, Surdulescu GL, Kimura M, Lu X, Spector TD and Aviv
A: The association between physical activity in leisure time and
leukocyte telomere length. Arch Intern Med. 168:154–158.
2008.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Bendix L, Gade MM, Staun PW, Kimura M,
Jeune B, Hjelmborg JV, Aviv A and Christensen K: Leukocyte telomere
length and physical ability among Danish twins age 70+. Mech Ageing
Dev. 132:568–572. 2011.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Baylis D, Ntani G, Edwards MH, Syddall HE,
Bartlett DB, Dennison EM, Martin-Ruiz C, von Zglinicki T, Kuh D,
Lord JM, et al: Inflammation, telomere length, and grip strength: A
10-year longitudinal study. Calcif Tissue Int. 95:54–63.
2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Shadyab AH, LaMonte MJ, Kooperberg C,
Reiner AP, Carty CL, Manini TM, Hou L, Di C, Macera CA, Gallo LC,
et al: Leisure-time physical activity and leukocyte telomere length
among older women. Exp Gerontol. 95:141–147. 2017.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Jantunen H, Wasenius NS, Guzzardi MA,
Iozzo P, Kajantie E, Kautiainen H, Salonen MK and Eriksson JG:
Physical activity and telomeres in old age: A longitudinal 10-year
follow-up study. Gerontology. 66:315–322. 2020.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Stenbäck V, Mutt SJ, Leppäluoto J, Gagnon
DD, Mäkelä KA, Jokelainen J, Keinänen-Kiukaanniemi S and Herzig KH:
Association of physical activity with telomere length among elderly
adults - the oulu cohort 1945. Front Physiol.
10(444)2019.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Simpson RJ, Lowder TW, Spielmann G, Bigley
AB, LaVoy EC and Kunz H: Exercise and the aging immune system.
Ageing Res Rev. 11:404–420. 2012.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Zhang J, Rane G, Dai X, Shanmugam MK,
Arfuso F, Samy RP, Lai MK, Kappei D, Kumar AP and Sethi G: Ageing
and the telomere connection: An intimate relationship with
inflammation. Ageing Res Rev. 25:55–69. 2016.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Ludlow AT, Spangenburg EE, Chin ER, Cheng
WH and Roth SM: Telomeres shorten in response to oxidative stress
in mouse skeletal muscle fibers. J Gerontol A Biol Sci Med Sci.
69:821–830. 2014.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Opresko PL, Fan J, Danzy S, Wilson DM and
Bohr VA: Oxidative damage in telomeric DNA disrupts recognition by
TRF1 and TRF2. Nucleic Acids Res. 33:1230–1239. 2005.PubMed/NCBI View Article : Google Scholar
|
|
63
|
von Zglinicki T: Oxidative stress shortens
telomeres. Trends Biochem Sci. 27:339–344. 2002.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Sfeir A, Kosiyatrakul ST, Hockemeyer D,
MacRae SL, Karlseder J, Schildkraut CL and de Lange T: Mammalian
telomeres resemble fragile sites and require TRF1 for efficient
replication. Cell. 138:90–103. 2009.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Chistiakov DA, Sobenin IA, Revin VV,
Orekhov AN and Bobryshev YV: Mitochondrial aging and age-related
dysfunction of mitochondria. Biomed Res Int.
2014(238463)2014.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Sahin E and DePinho RA: Axis of ageing:
Telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol. 13:397–404.
2012.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Radak Z, Chung HY, Koltai E, Taylor AW and
Goto S: Exercise, oxidative stress and hormesis. Ageing Res Rev.
7:34–42. 2008.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Arsenis NC, You T, Ogawa EF, Tinsley GM
and Zuo L: Physical activity and telomere length: Impact of aging
and potential mechanisms of action. Oncotarget. 8:45008–45019.
2017.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Garland SN, Johnson B, Palmer C, Speck RM,
Donelson M, Xie SX, DeMichele A and Mao JJ: Physical activity and
telomere length in early stage breast cancer survivors. Breast
Cancer Res. 16(413)2014.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Voisin S, Eynon N, Yan X and Bishop DJ:
Exercise training and DNA methylation in humans. Acta Physiol
(Oxf). 213:39–59. 2015.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Denham J, O'Brien BJ and Charchar FJ:
Telomere length maintenance and cardio-metabolic disease prevention
through exercise training. Sports Med. 46:1213–1237.
2016.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Werner C, Fürster T, Widmann T, Pöss J,
Roggia C, Hanhoun M, Scharhag J, Büchner N, Meyer T, Kindermann W,
et al: Physical exercise prevents cellular senescence in
circulating leukocytes and in the vessel wall. Circulation.
120:2438–2447. 2009.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Koering CE, Pollice A, Zibella MP, Bauwens
S, Puisieux A, Brunori M, Brun C, Martins L, Sabatier L, Pulitzer
JF and Gilson E: Human telomeric position effect is determined by
chromosomal context and telomeric chromatin integrity. EMBO Rep.
3:1055–1061. 2002.PubMed/NCBI View Article : Google Scholar
|
|
74
|
van Steensel B, Smogorzewska A and de
Lange T: TRF2 protects human telomeres from end-to-end fusions.
Cell. 92:401–413. 1998.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Denham J, Nelson CP, O'Brien BJ, Nankervis
SA, Denniff M, Harvey JT, Marques FZ, Codd V, Zukowska-Szczechowska
E, Samani NJ, et al: Longer leukocyte telomeres are associated with
ultra-endurance exercise independent of cardiovascular risk
factors. PLoS One. 8(e69377)2013.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Slentz CA, Houmard JA and Kraus WE: Modest
exercise prevents the progressive disease associated with physical
inactivity. Exerc Sport Sci Rev. 35:18–23. 2007.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Sanz C, Gautier JF and Hanaire H: Physical
exercise for the prevention and treatment of type 2 diabetes.
Diabetes Metab. 36:346–351. 2010.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Schuler G, Adams V and Goto Y: Role of
exercise in the prevention of cardiovascular disease: Results,
mechanisms, and new perspectives. Eur Heart J. 34:1790–1799.
2013.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Krauss J, Farzaneh-Far R, Puterman E, Na
B, Lin J, Epel E, Blackburn E and Whooley MA: Physical fitness and
telomere length in patients with coronary heart disease: Findings
from the heart and soul study. PLoS One. 6(e26983)2011.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Dankel SJ, Loenneke JP and Loprinzi PD:
The impact of overweight/obesity duration and physical activity on
telomere length: An application of the WATCH paradigm. Obes Res
Clin Pract. 11:247–252. 2017.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Testa R, Olivieri F, Sirolla C, Spazzafumo
L, Rippo MR, Marra M, Bonfigli AR, Ceriello A, Antonicelli R,
Franceschi C, Castellucci C, et al: Leukocyte telomere length is
associated with complications of type 2 diabetes mellitus. Diabet
Med. 28:1388–1394. 2011.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Carapeto PV and Aguayo-Mazzucato C:
Effects of exercise on cellular and tissue aging. Aging (Albany
NY). 13:14522–14543. 2021.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Lefferts WK, Davis MM and Valentine RJ:
Exercise as an aging mimetic: A new perspective on the mechanisms
behind exercise as preventive medicine against age-related chronic
disease. Front Physiol. 13(866792)2022.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Werner CM, Hecksteden A, Morsch A, Zundler
J, Wegmann M, Kratzsch J, Thiery J, Hohl M, Bittenbring JT, Neumann
F, et al: Differential effects of endurance, interval, and
resistance training on telomerase activity and telomere length in a
randomized, controlled study. Eur Heart J. 40:34–46.
2019.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Mayer F, Scharhag-Rosenberger F, Carlsohn
A, Cassel M, Müller S and Scharhag J: The intensity and effects of
strength training in the elderly. Dtsch Arztebl Int. 108:359–364.
2011.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Dimauro I, Scalabrin M, Fantini C,
Grazioli E, Beltran Valls MR, Mercatelli N, Parisi A, Sabatini S,
Di Luigi L and Caporossi D: Resistance training and redox
homeostasis: Correlation with age-associated genomic changes. Redox
Biol. 10:34–44. 2016.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Kim JH, Ko JH, Lee D, Lim I and Bang H:
Habitual physical exercise has beneficial effects on telomere
length in postmenopausal women. Menopause. 19:1109–1115.
2012.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Savela S, Saijonmaa O, Strandberg TE,
Koistinen P, Strandberg AY, Tilvis RS, Pitkälä KH, Miettinen TA and
Fyhrquist F: Physical activity in midlife and telomere length
measured in old age. Exp Gerontol. 48:81–84. 2013.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Tzemah-Shahar R, Hochner H, Iktilat K and
Agmon M: What can we learn from physical capacity about biological
age? A systematic review. Ageing Res Rev. 77(101609)2022.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Ferreira MSV, Kirschner M, Halfmeyer I,
Estrada N, Xicoy B, Isfort S, Vieri M, Zamora L, Abels A, Bouillon
AS, et al: Comparison of flow-FISH and MM-qPCR telomere length
assessment techniques for the screening of telomeropathies. Ann NY
Acad Sci. 1466:93–103. 2020.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Cawthon RM: Telomere length measurement by
a novel monochrome multiplex quantitative PCR method. Nucleic Acids
Res. 37(e21)2009.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Lin J, Smith DL, Esteves K and Drury S:
Telomere length measurement by qPCR - Summary of critical factors
and recommendations for assay design. Psychoneuroendocrinology.
99:271–278. 2019.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Gutierrez-Rodrigues F, Santana-Lemos BA,
Scheucher PS, Alves-Paiva RM and Calado RT: direct comparison of
flow-FISH and qPCR as diagnostic tests for telomere length
measurement in humans. PLoS One. 9(e113747)2014.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Tsatsakis A, Tsoukalas D, Fragkiadaki P,
Vakonaki E, Tzatzarakis M, Sarandi E, Nikitovic D, Tsilimidos G and
Alegakis AK: Developing BIOTEL: A semi-automated spreadsheet for
estimating telomere length and biological age. Front Genet.
10(84)2019.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Canela A, Vera E, Klatt P and Blasco MA:
High-throughput telomere length quantification by FISH and its
application to human population studies. Proc Natl Acad Sci USA.
104:5300–5305. 2007.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Tigchelaar EF, Zhernakova A, Dekens JA,
Hermes G, Baranska A, Mujagic Z, Swertz MA, Muñoz AM, Deelen P,
Cénit MC, et al: Cohort profile: LifeLines DEEP, a prospective,
general population cohort study in the northern Netherlands: Study
design and baseline characteristics. BMJ Open.
5(e006772)2015.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Kujala UM: Is physical activity a cause of
longevity? It is not as straightforward as some would believe. A
critical analysis. Br J Sports Med. 52:914–918. 2018.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Gabrys L, Baumert J, Heidemann C, Busch M
and Finger JD: Sports activity patterns and cardio-metabolic health
over time among adults in Germany: Results of a nationwide 12-year
follow-up study. J Sport Health Sci. 10:439–446. 2021.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Lemez S and Baker J: Do elite athletes
live longer? A systematic review of mortality and longevity in
elite athletes. Sports Med Open. 1(16)2015.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Beattie K, Kenny IC, Lyons M and Carson
BP: The effect of strength training on performance in endurance
athletes. Sports Med. 44:845–865. 2014.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Garatachea N, Santos-Lozano A,
Sanchis-Gomar F, Fiuza-Luces C, Pareja-Galeano H, Emanuele E and
Lucia A: Elite athletes live longer than the general population: A
meta-analysis. Mayo Clin Proc. 89:1195–1200. 2014.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Sousa CV, Silva Aguiar S, Deus LA, Barbosa
LP, Dos Santos PA, Neves RVP, Maciel LA, Moraes MR, Moreira SR,
Grubert Campbell CS, et al: Faster and healthier: Relationship
between telomere and performance in master athletes. Int J Sports
Med. 41:339–344. 2020.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Rosa TS, Neves RVP, Deus LA, Sousa CV, da
Silva Aguiar S, de Souza MK, Moraes MR, Rosa ÉCCC, Andrade RV,
Korhonen MT and Simões HG: Sprint and endurance training in
relation to redox balance, inflammatory status and biomarkers of
aging in master athletes. Nitric Oxide. 102:42–51. 2020.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Sousa CV, Aguiar SS, Santos PA, Barbosa
LP, Knechtle B, Nikolaidis PT, Deus LA, Sales MM, Rosa ECCC, Rosa
TS, et al: Telomere length and redox balance in master endurance
runners: The role of nitric oxide. Exp Gerontol. 117:113–118.
2019.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Denham J, O'Brien BJ, Prestes PR, Brown NJ
and Charchar FJ: Increased expression of telomere-regulating genes
in endurance athletes with long leukocyte telomeres. J Appl Physiol
(1985). 120:148–158. 2016.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Hagman M, Werner C, Kamp K, Fristrup B,
Hornstrup T, Meyer T, Böhm M, Laufs U and Krustrup P: Reduced
telomere shortening in lifelong trained male football players
compared to age-matched inactive controls. Prog Cardiovasc Dis.
63:738–749. 2020.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Denham J and Sellami M: Exercise training
increases telomerase reverse transcriptase gene expression and
telomerase activity: A systematic review and meta-analysis. Ageing
Res Rev. 70(101411)2021.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Laye MJ, Solomon TPJ, Karstoft K, Pedersen
KK, Nielsen SD and Pedersen BK: Increased shelterin mRNA expression
in peripheral blood mononuclear cells and skeletal muscle following
an ultra-long-distance running event. J Appl Physiol (1985).
112:773–781. 2012.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Abrahin O, Cortinhas-Alves EA, Vieira RP
and Guerreiro JF: Elite athletes have longer telomeres than
sedentary subjects: A meta-analysis. Exp Gerontol. 119:138–145.
2019.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Minuzzi LG, Chupel MU, Rama L, Rosado F,
Muñoz VR, Gaspar RC, Kuga GK, Furtado GE, Pauli JR and Teixeira AM:
Lifelong exercise practice and immunosenescence: Master athletes
cytokine response to acute exercise. Cytokine. 115:1–7.
2019.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Kusy K and Zieliński J: Sprinters versus
long-distance runners: How to grow old healthy. Exerc Sport Sci
Rev. 43:57–64. 2015.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Benedini S, Dozio E, Invernizzi PL,
Vianello E, Banfi G, Terruzzi I, Luzi L and Corsi Romanelli MM:
Irisin: A potential link between physical exercise and
metabolism-an observational study in differently trained subjects,
from elite athletes to sedentary people. J Diabetes Res.
2017(1039161)2017.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Aguiar SS, Sousa CV, Santos PA, Barbosa
LP, Maciel LA, Coelho-Júnior HJ, Motta-Santos D, Rosa TS, Degens H
and Simões HG: Master athletes have longer telomeres than
age-matched non-athletes. A systematic review, meta-analysis and
discussion of possible mechanisms. Exp Gerontol.
146(111212)2021.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Simões HG, Rosa TS, Sousa CV, Aguiar SDS,
Motta-Santos D, Degens H, Korhonen MT and Campbell CSG: Does longer
leukocyte telomere length and higher physical fitness protect
master athletes from consequences of coronavirus (SARS-CoV-2)
infection? Front Sports Act Living. 2(87)2020.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Liu S, Wang C, Green G, Zhuo H, Liu KD,
Kangelaris KN, Gomez A, Jauregui A, Vessel K, Ke S, et al:
Peripheral blood leukocyte telomere length is associated with
survival of sepsis patients. Eur Respir J.
55(1901044)2020.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Keyaerts E, Vijgen L, Chen L, Maes P,
Hedenstierna G and Van Ranst M: Inhibition of SARS-coronavirus
infection in vitro by S-nitroso-N-acetylpenicillamine, a nitric
oxide donor compound. Int J Infect Dis. 8:223–226. 2004.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Siopis G: Elite athletes maintain peak
performance after testing positive for SARS-CoV-2. J Sci Med Sport.
25:195–196. 2022.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Collins M, Renault V, Grobler LA, St Clair
Gibson A, Lambert MI, Wayne Derman E, Butler-Browne GS, Noakes TD
and Mouly V: Athletes with exercise-associated fatigue have
abnormally short muscle DNA telomeres. Med Sci Sports Exerc.
35:1524–1528. 2003.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Wan JJ, Qin Z, Wang PY, Sun Y and Liu X:
Muscle fatigue: General understanding and treatment. Exp Mol Med.
49(e384)2017.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Burns L, Weissensteiner JR, Cohen M and
Bird SR: A survey of elite and pre-elite athletes' perceptions of
key support, lifestyle and performance factors. BMC Sports Sci Med
Rehabil. 14(2)2022.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Saßenroth D, Meyer A, Salewsky B, Kroh M,
Norman K, Steinhagen-Thiessen E and Demuth I: Sports and exercise
at different ages and leukocyte telomere length in later life-data
from the berlin aging study II (BASE-II). PLoS One.
10(e0142131)2015.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Muniesa CA, Verde Z, Diaz-Ureña G,
Santiago C, Gutiérrez F, Díaz E, Gómez-Gallego F, Pareja-Galeano H,
Soares-Miranda L and Lucia A: Telomere length in elite athletes.
Int J Sports Physiol Perform. 12:994–996. 2017.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Simoes HG, Sousa CV, Dos Santos Rosa T, da
Silva Aguiar S, Deus LA, Rosa ECCC, Amato AA and Andrade RV: Longer
telomere length in elite master sprinters: Relationship to
performance and body composition. Int J Sports Med. 38:1111–1116.
2017.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Sellami M, Al-muraikhy S, Al-Jaber H,
Al-Amri H, Al-Mansoori L, Mazloum NA, Donati F, Botre F and
Elrayess MA: Age and sport intensity-dependent changes in cytokines
and telomere length in elite athletes. Antioxidants (Basel).
10(1035)2021.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Spanakis M, Fragkiadaki P, Renieri E,
Vakonaki E, Fragkiadoulaki I, Alegakis A, Kiriakakis M, Panagiotou
N, Ntoumou E, Gratsias I, et al: Advancing athletic assessment by
integrating conventional methods with cutting-edge biomedical
technologies for comprehensive performance, wellness, and longevity
insights. Front Sports Act Living. 5(1327792)2023.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Rae DE, Vignaud A, Butler-Browne GS,
Thornell LE, Sinclair-Smith C, Derman EW, Lambert MI and Collins M:
Skeletal muscle telomere length in healthy, experienced, endurance
runners. Eur J Appl Physiol. 109:323–330. 2010.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Epel ES, Blackburn EH, Lin J, Dhabhar FS,
Adler NE, Morrow JD and Cawthon RM: Accelerated telomere shortening
in response to life stress. Proc Natl Acad Sci USA.
101:17312–17315. 2004.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Epel E, Daubenmier J, Moskowitz JT,
Folkman S and Blackburn E: Can meditation slow rate of cellular
aging? Cognitive stress, mindfulness, and telomeres. Ann N Y Acad
Sci. 1172:34–53. 2009.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Purcell R, Gwyther K and Rice SM: Mental
health in elite athletes: Increased awareness requires an early
intervention framework to respond to athlete needs. Sports Med
Open. 5(46)2019.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Seib C, Whiteside E, Humphreys J, Lee K,
Thomas P, Chopin L, Crisp G, O'Keeffe A, Kimlin M, Stacey A and
Anderson D: A longitudinal study of the impact of chronic
psychological stress on health-related quality of life and clinical
biomarkers: Protocol for the Australian healthy aging of women
study. BMC Public Health. 14(9)2014.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Jiang Y, Da W, Qiao S, Zhang Q, Li X, Ivey
G and Zilioli S: Basal cortisol, cortisol reactivity, and telomere
length: A systematic review and meta-analysis.
Psychoneuroendocrinology. 103:163–172. 2019.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Mehrsafar AH, Serrano Rosa MA, Moghadam
Zadeh A and Gazerani P: Stress, professional lifestyle, and
telomere biology in elite athletes: A growing trend in
psychophysiology of sport. Front Psychol. 11(567214)2020.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Hurst P, King A, Massey K, Kavussanu M and
Ring C: A national anti-doping education programme reduces doping
susceptibility in British athletes. Psychol Sport Exerc.
69(102512)2023.PubMed/NCBI View Article : Google Scholar
|