Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
World Academy of Sciences Journal
Join Editorial Board Propose a Special Issue
Print ISSN: 2632-2900 Online ISSN: 2632-2919
Journal Cover
July-August 2025 Volume 7 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-August 2025 Volume 7 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The impact of exercise on telomere length dynamics: Molecular mechanisms and implications in athletes (Review)

  • Authors:
    • Stella Baliou
    • Marios Spanakis
    • Miruna-Maria Apetroaei
    • Petros Ioannou
    • Persefoni Fragkiadaki
    • Irene Fragkiadoulaki
    • Elisavet Renieri
    • Elena Vakonaki
    • Manolis N. Tzatzarakis
    • Alexander E. Nosyrev
    • Aristidis Tsatsakis
  • View Affiliations / Copyright

    Affiliations: Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania, School of Medicine, University of Crete, 71003 Heraklion, Greece, Molecular Theranostics Institute, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
    Copyright: © Baliou et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 56
    |
    Published online on: April 10, 2025
       https://doi.org/10.3892/wasj.2025.344
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Telomeres are nucleotide sequences found at the ends of chromosomes and they create protective structures at chromosome ends that sustain genetic integrity, along with associated proteins known as the shelterin complex. With each cell replication round, telomeres become shortened. When telomeres become critically short, the cells lead to death, experiencing either senescence or apoptosis. The lifestyle of every individual can positively or negatively affect the pace of telomere shortening. This phenomenon of telomere shortening can be reversed through the action of telomerase. Based on the growing literature, this review discusses the molecular mechanisms underlying the positive effects of exercise on telomere length dynamics. Such positive effects of exercise on telomere length dynamics are based on reducing inflammation and oxidative stress, as well as increasing the recruitment of the shelterin protein complex in combination with enhanced telomerase activity, thereby slowing the rate of telomere shortening. In this context, athletes show telomere length elongation, due to anti‑oxidant and anti‑inflammatory response, as well as owing to high shelterin protein complex expression and telomerase action. As a result, telomere length is regarded an useful marker to monitor the cellular health and the athletic performance of athletes. Additionally, telomere analysis can offer personalized strategies for athletes to optimize their training, recovery, and injury prevention.
View Figures

Figure 1

View References

1 

Tian YE, Cropley V, Maier AB, Lautenschlager NT, Breakspear M and Zalesky A: Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat Med. 29:1221–1231. 2023.PubMed/NCBI View Article : Google Scholar

2 

López-Otín C, Blasco MA, Partridge L, Serrano M and Kroemer G: The hallmarks of aging. Cell. 153:1194–1217. 2013.PubMed/NCBI View Article : Google Scholar

3 

Campisi J and d'Adda Di Fagagna F: Cellular senescence: When bad things happen to good cells. Nat Rev Mol Cell Biol. 8:729–740. 2007.PubMed/NCBI View Article : Google Scholar

4 

Schmauck-Medina T, Molière A, Lautrup S, Zhang J, Chlopicki S, Madsen HB, Cao S, Soendenbroe C, Mansell E, Vestergaard MB, et al: New hallmarks of ageing: A 2022 Copenhagen ageing meeting summary. Aging (Albany NY). 14:6829–6839. 2022.PubMed/NCBI View Article : Google Scholar

5 

Chakravarti D, LaBella KA and DePinho RA: Telomeres: history, health, and hallmarks of aging. Cell. 184:306–322. 2021.PubMed/NCBI View Article : Google Scholar

6 

Tenchov R, Sasso JM, Wang X and Zhou QA: Aging hallmarks and progression and age-related diseases: A landscape view of research advancement. ACS Chem Neurosci. 15:1–30. 2024.PubMed/NCBI View Article : Google Scholar

7 

McHugh D and Gil J: Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol. 217:65–77. 2018.PubMed/NCBI View Article : Google Scholar

8 

Zhu Y, Liu X, Ding X, Wang F and Geng X: Telomere and its role in the aging pathways: Telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology. 20:1–16. 2019.PubMed/NCBI View Article : Google Scholar

9 

de Lange T: Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev. 19:2100–2110. 2005.PubMed/NCBI View Article : Google Scholar

10 

Marioni RE, Harris SE, Shah S, McRae AF, von Zglinicki T, Martin-Ruiz C, Wray NR, Visscher PM and Deary IJ: The epigenetic clock and telomere length are independently associated with chronological age and mortality. Int J Epidemiol. 45:424–432. 2016.PubMed/NCBI View Article : Google Scholar

11 

Fragkiadaki P, Nikitovic D, Kalliantasi K, Sarandi E, Thanasoula M, Stivaktakis PD, Nepka C, Spandidos DA, Tosounidis T and Tsatsakis A: Telomere length and telomerase activity in osteoporosis and osteoarthritis. Exp Ther Med. 19:1626–1632. 2020.PubMed/NCBI View Article : Google Scholar

12 

Kakridonis F, Pneumatikos SG, Vakonaki E, Berdiaki A, Tzatzarakis MN, Fragkiadaki P, Spandidos DA, Baliou S, Ioannou P, Hatzidaki E, et al: Telomere length as a predictive biomarker in osteoporosis (Review). Biomed Rep. 19(87)2023.PubMed/NCBI View Article : Google Scholar

13 

Sampson MJ, Winterbone MS, Hughes JC, Dozio N and Hughes DA: Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care. 29:283–289. 2006.PubMed/NCBI View Article : Google Scholar

14 

Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, Walston J, Kimura M and Aviv A: Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 165:14–21. 2007.PubMed/NCBI View Article : Google Scholar

15 

Wiemann SU, Satyanarayana A, Tsahuridu M, Tillmann HL, Zender L, Klempnauer J, Flemming P, Franco S, Blasco MA, Manns MP and Rudolph KL: Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 16:935–942. 2002.PubMed/NCBI View Article : Google Scholar

16 

Shay JW: Role of telomeres and telomerase in aging and cancer. Cancer Discov. 6:584–593. 2016.PubMed/NCBI View Article : Google Scholar

17 

Vasilopoulos E, Fragkiadaki P, Kalliora C, Fragou D, Docea AO, Vakonaki E, Tsoukalas D, Calina D, Buga AM, Georgiadis G, et al: The association of female and male infertility with telomere length (Review). Int J Mol Med. 44:375–389. 2019.PubMed/NCBI View Article : Google Scholar

18 

Vakonaki E, Tsiminikaki K, Plaitis S, Fragkiadaki P, Tsoukalas D, Katsikantami I, Vaki G, Tzatzarakis MN, Spandidos DA and Tsatsakis AM: Common mental disorders and association with telomere length. Biomed Rep. 8:111–116. 2018.PubMed/NCBI View Article : Google Scholar

19 

de Lange T: Shelterin-mediated telomere protection. Annu Rev Genet. 52:223–247. 2018.PubMed/NCBI View Article : Google Scholar

20 

Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G and de Lange T: Control of human telomere length by TRF1 and TRF2. Mol Cell Biol. 20:1659–1668. 2000.PubMed/NCBI View Article : Google Scholar

21 

Yang Z, Takai KK, Lovejoy CA and de Lange T: Break-induced replication promotes fragile telomere formation. Genes Dev. 34:1392–1405. 2020.PubMed/NCBI View Article : Google Scholar

22 

Blackburn EH: Telomeres: Structure and synthesis. J Biol Chem. 265:5919–5921. 1990.PubMed/NCBI

23 

Blackburn EH: Telomeres and telomerase: Their mechanisms of action and the effects of altering their functions. FEBS Lett. 579:859–862. 2005.PubMed/NCBI View Article : Google Scholar

24 

Bandaria JN, Qin P, Berk V, Chu S and Yildiz A: Shelterin protects chromosome ends by compacting telomeric chromatin. Cell. 164:735–746. 2016.PubMed/NCBI View Article : Google Scholar

25 

Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, et al: Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol. 14:355–365. 2012.PubMed/NCBI View Article : Google Scholar

26 

Baird DM: Telomere dynamics in human cells. Biochimie. 90:116–121. 2008.PubMed/NCBI View Article : Google Scholar

27 

Olovnikov AM: A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 41:181–190. 1973.PubMed/NCBI View Article : Google Scholar

28 

Radak Z and Boldogh I: 8-Oxo-7,8-dihydroguanine: Links to gene expression, aging, and defense against oxidative stress. Free Radic Biol Med. 49:587–596. 2010.PubMed/NCBI View Article : Google Scholar

29 

Dabrowska A, Venero JL, Iwasawa R, Hankir MK, Rahman S, Boobis A and Hajji N: PGC-1alpha controls mitochondrial biogenesis and dynamics in lead-induced neurotoxicity. Aging (Albany NY). 7:629–647. 2015.PubMed/NCBI View Article : Google Scholar

30 

Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL and Bohr VA: Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol. 17:308–321. 2016.PubMed/NCBI View Article : Google Scholar

31 

Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, Mitchell JR, Croteau DL and Bohr VA: Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell. 157:882–896. 2014.PubMed/NCBI View Article : Google Scholar

32 

Armanios M: The role of telomeres in human disease. Annu Rev Genomics Hum Genet. 23:363–381. 2022.PubMed/NCBI View Article : Google Scholar

33 

Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, et al: Cellular senescence: Defining a path forward. Cell. 179:813–827. 2019.PubMed/NCBI View Article : Google Scholar

34 

d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP and Jackson SP: A DNA damage checkpoint response in telomere-initiated senescence. Nature. 426:194–198. 2003.PubMed/NCBI View Article : Google Scholar

35 

Pech MF, Garbuzov A, Hasegawa K, Sukhwani M, Zhang RJ, Benayoun BA, Brockman SA, Lin S, Brunet A, Orwig KE and Artandi SE: High telomerase is a hallmark of undifferentiated spermatogonia and is required for maintenance of male germline stem cells. Genes Dev. 29:2420–2434. 2015.PubMed/NCBI View Article : Google Scholar

36 

Artandi SE and DePinho RA: Telomeres and telomerase in cancer. Carcinogenesis. 31:9–18. 2010.PubMed/NCBI View Article : Google Scholar

37 

Lee HW, Blasco MA, Gottlieb GJ, Horner JW, Greider CW and DePinho RA: Essential role of mouse telomerase in highly proliferative organs. Nature. 392:569–574. 1998.PubMed/NCBI View Article : Google Scholar

38 

Andreu-Sánchez S, Aubert G, Ripoll-Cladellas A, Henkelman S, Zhernakova DV, Sinha T, Kurilshikov A, Cenit MC, Jan Bonder M, Franke L, et al: Genetic, parental and lifestyle factors influence telomere length. Commun Biol. 5(565)2022.PubMed/NCBI View Article : Google Scholar

39 

Navarro C, Salazar J, Díaz MP, Chacin M, Santeliz R, Vera I, D Marco L, Parra H, Bernal MC, Castro A, et al: Intrinsic and environmental basis of aging: A narrative review. Heliyon. 9(e18239)2023.PubMed/NCBI View Article : Google Scholar

40 

Tsoukalas D, Fragkiadaki P, Docea A, Alegakis AK, Sarandi E, Vakonaki E, Salataj E, Kouvidi E, Nikitovic D, Kovatsi L, et al: Association of nutraceutical supplements with longer telomere length. Int J Mol Med. 44:218–226. 2019.PubMed/NCBI View Article : Google Scholar

41 

Baliou S, Ioannou P, Apetroaei MM, Vakonaki E, Fragkiadaki P, Kirithras E, Tzatzarakis MN, Arsene AL, Docea AO and Tsatsakis A: The impact of the mediterranean diet on telomere biology: implications for disease management-A narrative review. Nutrients. 16(2525)2024.PubMed/NCBI View Article : Google Scholar

42 

Wade KH, Richmond RC and Davey Smith G: Physical activity and longevity: How to move closer to causal inference. Br J Sports Med. 52:890–891. 2018.PubMed/NCBI View Article : Google Scholar

43 

Bennie JA, Shakespear-Druery J and De Cocker K: Muscle-strengthening exercise epidemiology: A new frontier in chronic disease prevention. Sports Med Open. 6(40)2020.PubMed/NCBI View Article : Google Scholar

44 

Rebelo-Marques A, De Sousa Lages A, Andrade R, Ribeiro CF, Mota-Pinto A, Carrilho F and Espregueira-Mendes J: Aging hallmarks: The benefits of physical exercise. Front Endocrinol (Lausanne). 9(258)2018.PubMed/NCBI View Article : Google Scholar

45 

Semeraro MD, Smith C, Kaiser M, Levinger I, Duque G, Gruber HJ and Herrmann M: Physical activity, a modulator of aging through effects on telomere biology. Aging (Albany NY). 12:13803–13823. 2020.PubMed/NCBI View Article : Google Scholar

46 

Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, Fagerland MW, Whincup P, Diaz KM, Hooker SP, Chernofsky A, et al: Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. BMJ. 366(l4570)2019.PubMed/NCBI View Article : Google Scholar

47 

Vyas CM, Ogata S, Reynolds CF, Mischoulon D, Chang G, Cook NR, Manson JE, Crous-Bou M, De Vivo I and Okereke OI: Telomere length and its relationships with lifestyle and behavioural factors: Variations by sex and race/ethnicity. Age Ageing. 50:838–846. 2021.PubMed/NCBI View Article : Google Scholar

48 

Valente C, Andrade R, Alvarez L, Rebelo-Marques A, Stamatakis E and Espregueira-Mendes J: Effect of physical activity and exercise on telomere length: Systematic review with meta-analysis. J Am Geriatr Soc. 69:3285–3300. 2021.PubMed/NCBI View Article : Google Scholar

49 

Buttet M, Bagheri R, Ugbolue UC, Laporte C, Trousselard M, Benson A, Bouillon-Minois JB and Dutheil F: Effect of a lifestyle intervention on telomere length: A systematic review and meta-analysis. Mech Ageing Dev. 206(111694)2022.PubMed/NCBI View Article : Google Scholar

50 

Schellnegger M, Lin AC, Hammer N and Kamolz LP: Physical activity on telomere length as a biomarker for aging: A systematic review. Sports Med Open. 8(111)2022.PubMed/NCBI View Article : Google Scholar

51 

Song S, Lee E and Kim H: Does exercise affect telomere length? A systematic review and meta-analysis of Randomized controlled trials. Medicina (Kaunas). 58(242)2022.PubMed/NCBI View Article : Google Scholar

52 

Sánchez-González JL, Sánchez-Rodríguez JL, Varela-Rodríguez S, González-Sarmiento R, Rivera-Picón C, Juárez-Vela R, Tejada-Garrido CI, Martín-Vallejo J and Navarro-López V: Effects of physical exercise on telomere length in healthy adults: Systematic review, meta-analysis, and meta-regression. JMIR Public Health Surveill. 10(e46019)2024.PubMed/NCBI View Article : Google Scholar

53 

Cherkas LF, Hunkin JL, Kato BS, Richards JB, Gardner JP, Surdulescu GL, Kimura M, Lu X, Spector TD and Aviv A: The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 168:154–158. 2008.PubMed/NCBI View Article : Google Scholar

54 

Bendix L, Gade MM, Staun PW, Kimura M, Jeune B, Hjelmborg JV, Aviv A and Christensen K: Leukocyte telomere length and physical ability among Danish twins age 70+. Mech Ageing Dev. 132:568–572. 2011.PubMed/NCBI View Article : Google Scholar

55 

Baylis D, Ntani G, Edwards MH, Syddall HE, Bartlett DB, Dennison EM, Martin-Ruiz C, von Zglinicki T, Kuh D, Lord JM, et al: Inflammation, telomere length, and grip strength: A 10-year longitudinal study. Calcif Tissue Int. 95:54–63. 2014.PubMed/NCBI View Article : Google Scholar

56 

Shadyab AH, LaMonte MJ, Kooperberg C, Reiner AP, Carty CL, Manini TM, Hou L, Di C, Macera CA, Gallo LC, et al: Leisure-time physical activity and leukocyte telomere length among older women. Exp Gerontol. 95:141–147. 2017.PubMed/NCBI View Article : Google Scholar

57 

Jantunen H, Wasenius NS, Guzzardi MA, Iozzo P, Kajantie E, Kautiainen H, Salonen MK and Eriksson JG: Physical activity and telomeres in old age: A longitudinal 10-year follow-up study. Gerontology. 66:315–322. 2020.PubMed/NCBI View Article : Google Scholar

58 

Stenbäck V, Mutt SJ, Leppäluoto J, Gagnon DD, Mäkelä KA, Jokelainen J, Keinänen-Kiukaanniemi S and Herzig KH: Association of physical activity with telomere length among elderly adults - the oulu cohort 1945. Front Physiol. 10(444)2019.PubMed/NCBI View Article : Google Scholar

59 

Simpson RJ, Lowder TW, Spielmann G, Bigley AB, LaVoy EC and Kunz H: Exercise and the aging immune system. Ageing Res Rev. 11:404–420. 2012.PubMed/NCBI View Article : Google Scholar

60 

Zhang J, Rane G, Dai X, Shanmugam MK, Arfuso F, Samy RP, Lai MK, Kappei D, Kumar AP and Sethi G: Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Res Rev. 25:55–69. 2016.PubMed/NCBI View Article : Google Scholar

61 

Ludlow AT, Spangenburg EE, Chin ER, Cheng WH and Roth SM: Telomeres shorten in response to oxidative stress in mouse skeletal muscle fibers. J Gerontol A Biol Sci Med Sci. 69:821–830. 2014.PubMed/NCBI View Article : Google Scholar

62 

Opresko PL, Fan J, Danzy S, Wilson DM and Bohr VA: Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Res. 33:1230–1239. 2005.PubMed/NCBI View Article : Google Scholar

63 

von Zglinicki T: Oxidative stress shortens telomeres. Trends Biochem Sci. 27:339–344. 2002.PubMed/NCBI View Article : Google Scholar

64 

Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, Schildkraut CL and de Lange T: Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell. 138:90–103. 2009.PubMed/NCBI View Article : Google Scholar

65 

Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN and Bobryshev YV: Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int. 2014(238463)2014.PubMed/NCBI View Article : Google Scholar

66 

Sahin E and DePinho RA: Axis of ageing: Telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol. 13:397–404. 2012.PubMed/NCBI View Article : Google Scholar

67 

Radak Z, Chung HY, Koltai E, Taylor AW and Goto S: Exercise, oxidative stress and hormesis. Ageing Res Rev. 7:34–42. 2008.PubMed/NCBI View Article : Google Scholar

68 

Arsenis NC, You T, Ogawa EF, Tinsley GM and Zuo L: Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget. 8:45008–45019. 2017.PubMed/NCBI View Article : Google Scholar

69 

Garland SN, Johnson B, Palmer C, Speck RM, Donelson M, Xie SX, DeMichele A and Mao JJ: Physical activity and telomere length in early stage breast cancer survivors. Breast Cancer Res. 16(413)2014.PubMed/NCBI View Article : Google Scholar

70 

Voisin S, Eynon N, Yan X and Bishop DJ: Exercise training and DNA methylation in humans. Acta Physiol (Oxf). 213:39–59. 2015.PubMed/NCBI View Article : Google Scholar

71 

Denham J, O'Brien BJ and Charchar FJ: Telomere length maintenance and cardio-metabolic disease prevention through exercise training. Sports Med. 46:1213–1237. 2016.PubMed/NCBI View Article : Google Scholar

72 

Werner C, Fürster T, Widmann T, Pöss J, Roggia C, Hanhoun M, Scharhag J, Büchner N, Meyer T, Kindermann W, et al: Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 120:2438–2447. 2009.PubMed/NCBI View Article : Google Scholar

73 

Koering CE, Pollice A, Zibella MP, Bauwens S, Puisieux A, Brunori M, Brun C, Martins L, Sabatier L, Pulitzer JF and Gilson E: Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep. 3:1055–1061. 2002.PubMed/NCBI View Article : Google Scholar

74 

van Steensel B, Smogorzewska A and de Lange T: TRF2 protects human telomeres from end-to-end fusions. Cell. 92:401–413. 1998.PubMed/NCBI View Article : Google Scholar

75 

Denham J, Nelson CP, O'Brien BJ, Nankervis SA, Denniff M, Harvey JT, Marques FZ, Codd V, Zukowska-Szczechowska E, Samani NJ, et al: Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors. PLoS One. 8(e69377)2013.PubMed/NCBI View Article : Google Scholar

76 

Slentz CA, Houmard JA and Kraus WE: Modest exercise prevents the progressive disease associated with physical inactivity. Exerc Sport Sci Rev. 35:18–23. 2007.PubMed/NCBI View Article : Google Scholar

77 

Sanz C, Gautier JF and Hanaire H: Physical exercise for the prevention and treatment of type 2 diabetes. Diabetes Metab. 36:346–351. 2010.PubMed/NCBI View Article : Google Scholar

78 

Schuler G, Adams V and Goto Y: Role of exercise in the prevention of cardiovascular disease: Results, mechanisms, and new perspectives. Eur Heart J. 34:1790–1799. 2013.PubMed/NCBI View Article : Google Scholar

79 

Krauss J, Farzaneh-Far R, Puterman E, Na B, Lin J, Epel E, Blackburn E and Whooley MA: Physical fitness and telomere length in patients with coronary heart disease: Findings from the heart and soul study. PLoS One. 6(e26983)2011.PubMed/NCBI View Article : Google Scholar

80 

Dankel SJ, Loenneke JP and Loprinzi PD: The impact of overweight/obesity duration and physical activity on telomere length: An application of the WATCH paradigm. Obes Res Clin Pract. 11:247–252. 2017.PubMed/NCBI View Article : Google Scholar

81 

Testa R, Olivieri F, Sirolla C, Spazzafumo L, Rippo MR, Marra M, Bonfigli AR, Ceriello A, Antonicelli R, Franceschi C, Castellucci C, et al: Leukocyte telomere length is associated with complications of type 2 diabetes mellitus. Diabet Med. 28:1388–1394. 2011.PubMed/NCBI View Article : Google Scholar

82 

Carapeto PV and Aguayo-Mazzucato C: Effects of exercise on cellular and tissue aging. Aging (Albany NY). 13:14522–14543. 2021.PubMed/NCBI View Article : Google Scholar

83 

Lefferts WK, Davis MM and Valentine RJ: Exercise as an aging mimetic: A new perspective on the mechanisms behind exercise as preventive medicine against age-related chronic disease. Front Physiol. 13(866792)2022.PubMed/NCBI View Article : Google Scholar

84 

Werner CM, Hecksteden A, Morsch A, Zundler J, Wegmann M, Kratzsch J, Thiery J, Hohl M, Bittenbring JT, Neumann F, et al: Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur Heart J. 40:34–46. 2019.PubMed/NCBI View Article : Google Scholar

85 

Mayer F, Scharhag-Rosenberger F, Carlsohn A, Cassel M, Müller S and Scharhag J: The intensity and effects of strength training in the elderly. Dtsch Arztebl Int. 108:359–364. 2011.PubMed/NCBI View Article : Google Scholar

86 

Dimauro I, Scalabrin M, Fantini C, Grazioli E, Beltran Valls MR, Mercatelli N, Parisi A, Sabatini S, Di Luigi L and Caporossi D: Resistance training and redox homeostasis: Correlation with age-associated genomic changes. Redox Biol. 10:34–44. 2016.PubMed/NCBI View Article : Google Scholar

87 

Kim JH, Ko JH, Lee D, Lim I and Bang H: Habitual physical exercise has beneficial effects on telomere length in postmenopausal women. Menopause. 19:1109–1115. 2012.PubMed/NCBI View Article : Google Scholar

88 

Savela S, Saijonmaa O, Strandberg TE, Koistinen P, Strandberg AY, Tilvis RS, Pitkälä KH, Miettinen TA and Fyhrquist F: Physical activity in midlife and telomere length measured in old age. Exp Gerontol. 48:81–84. 2013.PubMed/NCBI View Article : Google Scholar

89 

Tzemah-Shahar R, Hochner H, Iktilat K and Agmon M: What can we learn from physical capacity about biological age? A systematic review. Ageing Res Rev. 77(101609)2022.PubMed/NCBI View Article : Google Scholar

90 

Ferreira MSV, Kirschner M, Halfmeyer I, Estrada N, Xicoy B, Isfort S, Vieri M, Zamora L, Abels A, Bouillon AS, et al: Comparison of flow-FISH and MM-qPCR telomere length assessment techniques for the screening of telomeropathies. Ann NY Acad Sci. 1466:93–103. 2020.PubMed/NCBI View Article : Google Scholar

91 

Cawthon RM: Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 37(e21)2009.PubMed/NCBI View Article : Google Scholar

92 

Lin J, Smith DL, Esteves K and Drury S: Telomere length measurement by qPCR - Summary of critical factors and recommendations for assay design. Psychoneuroendocrinology. 99:271–278. 2019.PubMed/NCBI View Article : Google Scholar

93 

Gutierrez-Rodrigues F, Santana-Lemos BA, Scheucher PS, Alves-Paiva RM and Calado RT: direct comparison of flow-FISH and qPCR as diagnostic tests for telomere length measurement in humans. PLoS One. 9(e113747)2014.PubMed/NCBI View Article : Google Scholar

94 

Tsatsakis A, Tsoukalas D, Fragkiadaki P, Vakonaki E, Tzatzarakis M, Sarandi E, Nikitovic D, Tsilimidos G and Alegakis AK: Developing BIOTEL: A semi-automated spreadsheet for estimating telomere length and biological age. Front Genet. 10(84)2019.PubMed/NCBI View Article : Google Scholar

95 

Canela A, Vera E, Klatt P and Blasco MA: High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci USA. 104:5300–5305. 2007.PubMed/NCBI View Article : Google Scholar

96 

Tigchelaar EF, Zhernakova A, Dekens JA, Hermes G, Baranska A, Mujagic Z, Swertz MA, Muñoz AM, Deelen P, Cénit MC, et al: Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: Study design and baseline characteristics. BMJ Open. 5(e006772)2015.PubMed/NCBI View Article : Google Scholar

97 

Kujala UM: Is physical activity a cause of longevity? It is not as straightforward as some would believe. A critical analysis. Br J Sports Med. 52:914–918. 2018.PubMed/NCBI View Article : Google Scholar

98 

Gabrys L, Baumert J, Heidemann C, Busch M and Finger JD: Sports activity patterns and cardio-metabolic health over time among adults in Germany: Results of a nationwide 12-year follow-up study. J Sport Health Sci. 10:439–446. 2021.PubMed/NCBI View Article : Google Scholar

99 

Lemez S and Baker J: Do elite athletes live longer? A systematic review of mortality and longevity in elite athletes. Sports Med Open. 1(16)2015.PubMed/NCBI View Article : Google Scholar

100 

Beattie K, Kenny IC, Lyons M and Carson BP: The effect of strength training on performance in endurance athletes. Sports Med. 44:845–865. 2014.PubMed/NCBI View Article : Google Scholar

101 

Garatachea N, Santos-Lozano A, Sanchis-Gomar F, Fiuza-Luces C, Pareja-Galeano H, Emanuele E and Lucia A: Elite athletes live longer than the general population: A meta-analysis. Mayo Clin Proc. 89:1195–1200. 2014.PubMed/NCBI View Article : Google Scholar

102 

Sousa CV, Silva Aguiar S, Deus LA, Barbosa LP, Dos Santos PA, Neves RVP, Maciel LA, Moraes MR, Moreira SR, Grubert Campbell CS, et al: Faster and healthier: Relationship between telomere and performance in master athletes. Int J Sports Med. 41:339–344. 2020.PubMed/NCBI View Article : Google Scholar

103 

Rosa TS, Neves RVP, Deus LA, Sousa CV, da Silva Aguiar S, de Souza MK, Moraes MR, Rosa ÉCCC, Andrade RV, Korhonen MT and Simões HG: Sprint and endurance training in relation to redox balance, inflammatory status and biomarkers of aging in master athletes. Nitric Oxide. 102:42–51. 2020.PubMed/NCBI View Article : Google Scholar

104 

Sousa CV, Aguiar SS, Santos PA, Barbosa LP, Knechtle B, Nikolaidis PT, Deus LA, Sales MM, Rosa ECCC, Rosa TS, et al: Telomere length and redox balance in master endurance runners: The role of nitric oxide. Exp Gerontol. 117:113–118. 2019.PubMed/NCBI View Article : Google Scholar

105 

Denham J, O'Brien BJ, Prestes PR, Brown NJ and Charchar FJ: Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres. J Appl Physiol (1985). 120:148–158. 2016.PubMed/NCBI View Article : Google Scholar

106 

Hagman M, Werner C, Kamp K, Fristrup B, Hornstrup T, Meyer T, Böhm M, Laufs U and Krustrup P: Reduced telomere shortening in lifelong trained male football players compared to age-matched inactive controls. Prog Cardiovasc Dis. 63:738–749. 2020.PubMed/NCBI View Article : Google Scholar

107 

Denham J and Sellami M: Exercise training increases telomerase reverse transcriptase gene expression and telomerase activity: A systematic review and meta-analysis. Ageing Res Rev. 70(101411)2021.PubMed/NCBI View Article : Google Scholar

108 

Laye MJ, Solomon TPJ, Karstoft K, Pedersen KK, Nielsen SD and Pedersen BK: Increased shelterin mRNA expression in peripheral blood mononuclear cells and skeletal muscle following an ultra-long-distance running event. J Appl Physiol (1985). 112:773–781. 2012.PubMed/NCBI View Article : Google Scholar

109 

Abrahin O, Cortinhas-Alves EA, Vieira RP and Guerreiro JF: Elite athletes have longer telomeres than sedentary subjects: A meta-analysis. Exp Gerontol. 119:138–145. 2019.PubMed/NCBI View Article : Google Scholar

110 

Minuzzi LG, Chupel MU, Rama L, Rosado F, Muñoz VR, Gaspar RC, Kuga GK, Furtado GE, Pauli JR and Teixeira AM: Lifelong exercise practice and immunosenescence: Master athletes cytokine response to acute exercise. Cytokine. 115:1–7. 2019.PubMed/NCBI View Article : Google Scholar

111 

Kusy K and Zieliński J: Sprinters versus long-distance runners: How to grow old healthy. Exerc Sport Sci Rev. 43:57–64. 2015.PubMed/NCBI View Article : Google Scholar

112 

Benedini S, Dozio E, Invernizzi PL, Vianello E, Banfi G, Terruzzi I, Luzi L and Corsi Romanelli MM: Irisin: A potential link between physical exercise and metabolism-an observational study in differently trained subjects, from elite athletes to sedentary people. J Diabetes Res. 2017(1039161)2017.PubMed/NCBI View Article : Google Scholar

113 

Aguiar SS, Sousa CV, Santos PA, Barbosa LP, Maciel LA, Coelho-Júnior HJ, Motta-Santos D, Rosa TS, Degens H and Simões HG: Master athletes have longer telomeres than age-matched non-athletes. A systematic review, meta-analysis and discussion of possible mechanisms. Exp Gerontol. 146(111212)2021.PubMed/NCBI View Article : Google Scholar

114 

Simões HG, Rosa TS, Sousa CV, Aguiar SDS, Motta-Santos D, Degens H, Korhonen MT and Campbell CSG: Does longer leukocyte telomere length and higher physical fitness protect master athletes from consequences of coronavirus (SARS-CoV-2) infection? Front Sports Act Living. 2(87)2020.PubMed/NCBI View Article : Google Scholar

115 

Liu S, Wang C, Green G, Zhuo H, Liu KD, Kangelaris KN, Gomez A, Jauregui A, Vessel K, Ke S, et al: Peripheral blood leukocyte telomere length is associated with survival of sepsis patients. Eur Respir J. 55(1901044)2020.PubMed/NCBI View Article : Google Scholar

116 

Keyaerts E, Vijgen L, Chen L, Maes P, Hedenstierna G and Van Ranst M: Inhibition of SARS-coronavirus infection in vitro by S-nitroso-N-acetylpenicillamine, a nitric oxide donor compound. Int J Infect Dis. 8:223–226. 2004.PubMed/NCBI View Article : Google Scholar

117 

Siopis G: Elite athletes maintain peak performance after testing positive for SARS-CoV-2. J Sci Med Sport. 25:195–196. 2022.PubMed/NCBI View Article : Google Scholar

118 

Collins M, Renault V, Grobler LA, St Clair Gibson A, Lambert MI, Wayne Derman E, Butler-Browne GS, Noakes TD and Mouly V: Athletes with exercise-associated fatigue have abnormally short muscle DNA telomeres. Med Sci Sports Exerc. 35:1524–1528. 2003.PubMed/NCBI View Article : Google Scholar

119 

Wan JJ, Qin Z, Wang PY, Sun Y and Liu X: Muscle fatigue: General understanding and treatment. Exp Mol Med. 49(e384)2017.PubMed/NCBI View Article : Google Scholar

120 

Burns L, Weissensteiner JR, Cohen M and Bird SR: A survey of elite and pre-elite athletes' perceptions of key support, lifestyle and performance factors. BMC Sports Sci Med Rehabil. 14(2)2022.PubMed/NCBI View Article : Google Scholar

121 

Saßenroth D, Meyer A, Salewsky B, Kroh M, Norman K, Steinhagen-Thiessen E and Demuth I: Sports and exercise at different ages and leukocyte telomere length in later life-data from the berlin aging study II (BASE-II). PLoS One. 10(e0142131)2015.PubMed/NCBI View Article : Google Scholar

122 

Muniesa CA, Verde Z, Diaz-Ureña G, Santiago C, Gutiérrez F, Díaz E, Gómez-Gallego F, Pareja-Galeano H, Soares-Miranda L and Lucia A: Telomere length in elite athletes. Int J Sports Physiol Perform. 12:994–996. 2017.PubMed/NCBI View Article : Google Scholar

123 

Simoes HG, Sousa CV, Dos Santos Rosa T, da Silva Aguiar S, Deus LA, Rosa ECCC, Amato AA and Andrade RV: Longer telomere length in elite master sprinters: Relationship to performance and body composition. Int J Sports Med. 38:1111–1116. 2017.PubMed/NCBI View Article : Google Scholar

124 

Sellami M, Al-muraikhy S, Al-Jaber H, Al-Amri H, Al-Mansoori L, Mazloum NA, Donati F, Botre F and Elrayess MA: Age and sport intensity-dependent changes in cytokines and telomere length in elite athletes. Antioxidants (Basel). 10(1035)2021.PubMed/NCBI View Article : Google Scholar

125 

Spanakis M, Fragkiadaki P, Renieri E, Vakonaki E, Fragkiadoulaki I, Alegakis A, Kiriakakis M, Panagiotou N, Ntoumou E, Gratsias I, et al: Advancing athletic assessment by integrating conventional methods with cutting-edge biomedical technologies for comprehensive performance, wellness, and longevity insights. Front Sports Act Living. 5(1327792)2023.PubMed/NCBI View Article : Google Scholar

126 

Rae DE, Vignaud A, Butler-Browne GS, Thornell LE, Sinclair-Smith C, Derman EW, Lambert MI and Collins M: Skeletal muscle telomere length in healthy, experienced, endurance runners. Eur J Appl Physiol. 109:323–330. 2010.PubMed/NCBI View Article : Google Scholar

127 

Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD and Cawthon RM: Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA. 101:17312–17315. 2004.PubMed/NCBI View Article : Google Scholar

128 

Epel E, Daubenmier J, Moskowitz JT, Folkman S and Blackburn E: Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres. Ann N Y Acad Sci. 1172:34–53. 2009.PubMed/NCBI View Article : Google Scholar

129 

Purcell R, Gwyther K and Rice SM: Mental health in elite athletes: Increased awareness requires an early intervention framework to respond to athlete needs. Sports Med Open. 5(46)2019.PubMed/NCBI View Article : Google Scholar

130 

Seib C, Whiteside E, Humphreys J, Lee K, Thomas P, Chopin L, Crisp G, O'Keeffe A, Kimlin M, Stacey A and Anderson D: A longitudinal study of the impact of chronic psychological stress on health-related quality of life and clinical biomarkers: Protocol for the Australian healthy aging of women study. BMC Public Health. 14(9)2014.PubMed/NCBI View Article : Google Scholar

131 

Jiang Y, Da W, Qiao S, Zhang Q, Li X, Ivey G and Zilioli S: Basal cortisol, cortisol reactivity, and telomere length: A systematic review and meta-analysis. Psychoneuroendocrinology. 103:163–172. 2019.PubMed/NCBI View Article : Google Scholar

132 

Mehrsafar AH, Serrano Rosa MA, Moghadam Zadeh A and Gazerani P: Stress, professional lifestyle, and telomere biology in elite athletes: A growing trend in psychophysiology of sport. Front Psychol. 11(567214)2020.PubMed/NCBI View Article : Google Scholar

133 

Hurst P, King A, Massey K, Kavussanu M and Ring C: A national anti-doping education programme reduces doping susceptibility in British athletes. Psychol Sport Exerc. 69(102512)2023.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Baliou S, Spanakis M, Apetroaei M, Ioannou P, Fragkiadaki P, Fragkiadoulaki I, Renieri E, Vakonaki E, Tzatzarakis MN, Nosyrev AE, Nosyrev AE, et al: The impact of exercise on telomere length dynamics: Molecular mechanisms and implications in athletes (Review). World Acad Sci J 7: 56, 2025.
APA
Baliou, S., Spanakis, M., Apetroaei, M., Ioannou, P., Fragkiadaki, P., Fragkiadoulaki, I. ... Tsatsakis, A. (2025). The impact of exercise on telomere length dynamics: Molecular mechanisms and implications in athletes (Review). World Academy of Sciences Journal, 7, 56. https://doi.org/10.3892/wasj.2025.344
MLA
Baliou, S., Spanakis, M., Apetroaei, M., Ioannou, P., Fragkiadaki, P., Fragkiadoulaki, I., Renieri, E., Vakonaki, E., Tzatzarakis, M. N., Nosyrev, A. E., Tsatsakis, A."The impact of exercise on telomere length dynamics: Molecular mechanisms and implications in athletes (Review)". World Academy of Sciences Journal 7.4 (2025): 56.
Chicago
Baliou, S., Spanakis, M., Apetroaei, M., Ioannou, P., Fragkiadaki, P., Fragkiadoulaki, I., Renieri, E., Vakonaki, E., Tzatzarakis, M. N., Nosyrev, A. E., Tsatsakis, A."The impact of exercise on telomere length dynamics: Molecular mechanisms and implications in athletes (Review)". World Academy of Sciences Journal 7, no. 4 (2025): 56. https://doi.org/10.3892/wasj.2025.344
Copy and paste a formatted citation
x
Spandidos Publications style
Baliou S, Spanakis M, Apetroaei M, Ioannou P, Fragkiadaki P, Fragkiadoulaki I, Renieri E, Vakonaki E, Tzatzarakis MN, Nosyrev AE, Nosyrev AE, et al: The impact of exercise on telomere length dynamics: Molecular mechanisms and implications in athletes (Review). World Acad Sci J 7: 56, 2025.
APA
Baliou, S., Spanakis, M., Apetroaei, M., Ioannou, P., Fragkiadaki, P., Fragkiadoulaki, I. ... Tsatsakis, A. (2025). The impact of exercise on telomere length dynamics: Molecular mechanisms and implications in athletes (Review). World Academy of Sciences Journal, 7, 56. https://doi.org/10.3892/wasj.2025.344
MLA
Baliou, S., Spanakis, M., Apetroaei, M., Ioannou, P., Fragkiadaki, P., Fragkiadoulaki, I., Renieri, E., Vakonaki, E., Tzatzarakis, M. N., Nosyrev, A. E., Tsatsakis, A."The impact of exercise on telomere length dynamics: Molecular mechanisms and implications in athletes (Review)". World Academy of Sciences Journal 7.4 (2025): 56.
Chicago
Baliou, S., Spanakis, M., Apetroaei, M., Ioannou, P., Fragkiadaki, P., Fragkiadoulaki, I., Renieri, E., Vakonaki, E., Tzatzarakis, M. N., Nosyrev, A. E., Tsatsakis, A."The impact of exercise on telomere length dynamics: Molecular mechanisms and implications in athletes (Review)". World Academy of Sciences Journal 7, no. 4 (2025): 56. https://doi.org/10.3892/wasj.2025.344
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team