|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Lippman ME, Krueger KA, Eckert S, Sashegyi
A, Walls EL, Jamal S, Cauley JA and Cummings SR: Indicators of
lifetime estrogen exposure: effect on breast cancer incidence and
interaction with raloxifene therapy in the multiple outcomes of
raloxifene evaluation study participants. J Clin Oncol.
19:3111–3116. 2001.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Nguyen B, Venet D, Lambertini M, Desmedt
C, Salgado R, Horlings HM, Rothé F and Sotiriou C: Imprint of
parity and age at first pregnancy on the genomic landscape of
subsequent breast cancer. Breast Cancer Res. 21(25)2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Boyd NF, Rommens JM, Vogt K, Lee V, Hopper
JL, Yaffe MJ and Paterson AD: Mammographic breast density as an
intermediate phenotype for breast cancer. Lancet Oncol. 6:798–808.
2005.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Perou CM, Sørile T, Eisen MB, van de Rijn
M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA,
et al: Molecular portraits of human breast tumours. Nature.
406:747–752. 2000.PubMed/NCBI View
Article : Google Scholar
|
|
6
|
Pareja F, Geyer FC, Marchiò C, Burke KA,
Weigelt B and Reis-Filho JS: Triple-negative breast cancer: The
importance of molecular and histologic subtyping, and recognition
of low-grade variants. NPJ Breast Cancer. 2(16036)2016.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Soysal SD, Tzankov A and Muenst SE: Role
of the tumor microenvironment in breast cancer. Pathobiology.
82:142–152. 2015.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Terceiro LEL, Edechi CA, Ikeogu NM, Nickel
BE, Hombach-Klonisch S, Sharif T, Leygue E and Myal Y: The breast
tumor microenvironment: A key player in metastatic spread. Cancers
(Basel). 13(4798)2021.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Weigelt B and Bissell MJ: Unraveling the
microenvironmental influences on the normal mammary gland and
breast cancer. Semin Cancer Biol. 18:311–321. 2008.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Mittal S, Brown NJ and Holen I: The breast
tumor microenvironment: Role in cancer development, progression and
response to therapy. Expert Rev Mol Diagn. 18:227–243.
2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Diamanti-Kandarakis E, Bourguignon JP,
Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT and Gore AC:
Endocrine-disrupting chemicals: An endocrine society scientific
statement. Endocr Rev. 30:293–342. 2009.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Yilmaz B, Terekeci H, Sandal S and
Kelestimur F: Endocrine disrupting chemicals: Exposure, effects on
human health, mechanism of action, models for testing and
strategies for prevention. Rev Endocr Metab Disord. 21:127–147.
2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Gore AC, Chappell VA, Fenton SE, Flaws JA,
Nadal A, Prins GS, Toppari J and Zoeller RT: Executive summary to
EDC-2: The endocrine society's second scientific statement on
endocrine-disrupting chemicals. Endocr Rev. 36:593–602.
2015.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Zoeller RT, Brown TR, Doan LL, Gore AC,
Skakkebaek NE, Soto AM, Woodruff TJ and Vom Saal FS:
Endocrine-disrupting chemicals and public health protection: A
statement of principles from the endocrine society. Endocrinology.
153:4097–4110. 2012.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Cwiek-Ludwicka K and Ludwicki JK:
Endocrine disruptors in food contact materials; is there a health
threat? Rocz Panstw Zakl Hig. 65:169–177. 2014.PubMed/NCBI
|
|
16
|
La Merrill MA, Vandenberg LN, Smith MT,
Goodson W, Browne P, Patisaul HB, Guyton KZ, Kortenkamp A, Cogliano
VJ, Woodruff TJ, et al: Consensus on the key characteristics of
endocrine-disrupting chemicals as a basis for hazard
identification. Nat Rev Endocrinol. 16:45–57. 2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Brody JG and Rudel RA: Environmental
pollutants and breast cancer. Environ Health Perspect.
111:1007–1019. 2003.PubMed/NCBI View
Article : Google Scholar
|
|
18
|
Hawke E: Human biomonitoring results
reveal widespread exposure of general public to harmful chemicals.
https://chemtrust.org/hbm4eu_conference/. Accessed on
December 4, 2024.
|
|
19
|
Rochester JR and Bolden AL: Bisphenol S
and F: A systematic review and comparison of the hormonal activity
of bisphenol A substitutes. Environ Health Perspect. 123:643–650.
2015.PubMed/NCBI View Article : Google Scholar
|
|
20
|
European Food Safety Authority: Bisphenol
A | EFSA, 2023. https://www.efsa.europa.eu/en/topics/topic/bisphenol.
Accessed on December 11, 2024.
|
|
21
|
Liu X, Sakai H, Nishigori M, Suyama K,
Nawaji T, Ikeda S, Nishigouchi M, Okada H, Matsushima A, Nose T, et
al: Receptor-binding affinities of bisphenol A and its
next-generation analogs for human nuclear receptors. Toxicol Appl
Pharmacol. 377(114610)2019.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Nadal A, Fuentes E, Ripoll C, Villar-Pazos
S, Castellano-Muñoz M, Soriano S, Martinez-Pinna J, Quesada I and
Alonso-Magdalena P: Extranuclear-initiated estrogenic actions of
endocrine disrupting chemicals: Is there toxicology beyond
paracelsus? J Steroid Biochem Mol Biol. 176:16–22. 2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Cimmino I, Oriente F, D'Esposito V,
Liguoro D, Liguoro P, Ambrosio MR, Cabaro S, D'Andrea F, Beguinot
F, Formisano P and Valentino R: Low-dose bisphenol-A regulates
inflammatory cytokines through GPR30 in mammary adipose cells. J
Mol Endocrinol. 63:273–283. 2019.PubMed/NCBI View Article : Google Scholar
|
|
24
|
European Union: Comission Regulation (EU)
2016/2235, 2016. https://eur-lex.europa.eu/eli/reg/2016/2235/oj/eng.
Accessed on December 13, 2024.
|
|
25
|
EFSA Panel on Food Contact Materials,
Enzymes and Processing Aids (CEP). Lambré C, Barat Baviera JM,
Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob
K, Lampi E, et al: Re-evaluation of the risks to public health
related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J.
21(e06857)2023.PubMed/NCBI View Article : Google Scholar
|
|
26
|
European Commision: Internal Market,
Industry, Entrepreneurship and Smes-Bisphenol A: EU ban on use in
baby bottles. https://ec.europa.eu/newsroom/growth/items/44933/en.
Accessed on December 4, 2024.
|
|
27
|
European Commission: European
Commission-Daily News, 2024. https://ec.europa.eu/commission/presscorner/api/files/document/print/en/mex_24_3243/MEX_24_3243_EN.pdf.
Accessed on December 11, 2024.
|
|
28
|
U.S. Environmental Protection Agency:
Bisphenol A. (CASRN 80-05-7) | IRIS | US EPA. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0356_summary.pdf.
Accessed on December 4, 2024.
|
|
29
|
U.S. Food and Drug Administration (FDA):
Bisphenol A (BPA) | FDA. FDA, Silver Spring, MD, 2023. https://www.fda.gov/food/food-packaging-other-substances-come-contact-food-information-consumers/bisphenol-bpa.
Accessed on December 4, 2024.
|
|
30
|
European Chemicals Agency (ECHA):
Assessment of regulatory needs. ECHA, Helsinki, 2021. https://echa.europa.eu/documents/10162/7de6871f-30db-9cdc-0a13-20942f511e00.
Accessed on December 11, 2024.
|
|
31
|
Atlas E and Dimitrova V: Bisphenol S and
Bisphenol A disrupt morphogenesis of MCF-12A human mammary
epithelial cells. Sci Rep. 9(16005)2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kim JY, Choi HG, Lee HM, Lee GA, Hwang KA
and Choi KC: Effects of bisphenol compounds on the growth and
epithelial mesenchymal transition of MCF-7 CV human breast cancer
cells. J Biomed Res. 31(358)2017.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Winkler J, Liu P, Phong K, Hinrichs JH,
Ataii N, Williams K, Hadler-Olsen E, Samson S, Gartner ZJ, Fisher S
and Werb Z: Bisphenol A replacement chemicals, BPF and BPS, induce
protumorigenic changes in human mammary gland organoid morphology
and proteome. Proc Natl Acad Sci USA.
119(e2115308119)2022.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Mesnage R, Phedonos A, Arno M, Balu S,
Corton JC and Antoniou MN: Editor's highlight: Transcriptome
profiling reveals bisphenol A alternatives activate estrogen
receptor alpha in human breast cancer cells. Toxicol Sci.
158:431–443. 2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Yamasaki K, Noda S, Imatanaka N and Yakabe
Y: Comparative study of the uterotrophic potency of 14 chemicals in
a uterotrophic assay and their receptor-binding affinity. Toxicol
Lett. 146:111–120. 2004.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Stroheker T, Chagnon MC, Pinnert MF,
Berges R and Canivenc-Lavier MC: Estrogenic effects of food wrap
packaging xenoestrogens and flavonoids in female Wistar rats: A
comparative study. Reprod Toxicol. 17:421–432. 2003.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ji K, Hong S, Kho Y and Choi K: Effects of
bisphenol S exposure on endocrine functions and reproduction of
zebrafish. Environ Sci Technol. 47:8793–8800. 2013.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Darbre PD: Endocrine disrupting chemicals
and breast cancer cells. Adv Pharmacol. 92:485–520. 2021.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Wan MLY, Co VA and El-Nezami H: Endocrine
disrupting chemicals and breast cancer: A systematic review of
epidemiological studies. Crit Rev Food Sci Nutr. 62:6549–6576.
2022.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Vandenberg LN: Endocrine disrupting
chemicals and the mammary gland. Adv Pharmacol. 92:237–277.
2021.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Avagliano A, Granato G, Ruocco MR, Romano
V, Belviso I, Carfora A, Montagnani S and Arcucci A: Metabolic
reprogramming of cancer associated fibroblasts: The slavery of
stromal fibroblasts. Biomed Res Int. 2018(6075403)2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Camps JL, Chang SM, Hsu TC, Freeman MR,
Hong SJ, Zhau HE, von Eschenbach AC and Chung LW:
Fibroblast-mediated acceleration of human epithelial tumor growth
in vivo. Proc Natl Acad Sci USA. 87:75–79. 1990.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Bissell MJ, Rizki A and Mian IS: Tissue
architecture: The ultimate regulator of breast epithelial function.
Curr Opin Cell Biol. 15:753–762. 2003.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Kuziel G, Moore BN and Arendt LM: Obesity
and fibrosis: Setting the stage for breast cancer. Cancers (Basel).
15(2929)2023.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Ye F, Liang Y, Wang Y, Le Yang R, Luo D,
Li Y, Jin Y, Han D, Chen B, Zhao W, et al: Cancer-associated
fibroblasts facilitate breast cancer progression through exosomal
circTBPL1-mediated intercellular communication. Cell Death Dis.
14(471)2023.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P,
Zhuo W, Hu Y, Chen C, Chen L, et al: Cancer-associated fibroblasts
in breast cancer: Challenges and opportunities. Cancer Commun
(Lond). 42:401–434. 2022.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Archer M, Dasari P, Walsh D, Britt KL,
Evdokiou A and Ingman WV: Immune regulation of mammary fibroblasts
and the impact of mammographic density. J Clin Med.
11(799)2022.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Unsworth A, Anderson R and Britt K:
Stromal fibroblasts and the immune microenvironment: Partners in
mammary gland biology and pathology? J Mammary Gland Biol
Neoplasia. 19:169–182. 2014.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Thurfjell E: Breast density and the risk
of breast cancer. N Engl J Med. 347(866)2002.PubMed/NCBI View Article : Google Scholar
|
|
50
|
McCormack VA and dos Santos Silva I:
Breast density and parenchymal patterns as markers of breast cancer
risk: A meta-analysis. Cancer Epidemiol Biomarkers Prev.
15:1159–1169. 2006.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Hu Y, Zhang L, Wu X, Hou L, Li Z, Ju J, Li
Q, Qin W, Li J, Zhang Q, et al: Bisphenol A, an environmental
estrogen-like toxic chemical, induces cardiac fibrosis by
activating the ERK1/2 pathway. Toxicol Lett. 250-251:1–9.
2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Sprague BL, Trentham-Dietz A, Hedman CJ,
Wang J, Hemming JD, Hampton JM, Buist DS, Aiello Bowles EJ, Sisney
GS and Burnside ES: Circulating serum xenoestrogens and
mammographic breast density. Breast Cancer Res.
15(R45)2013.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Schedin P and Keely PJ: Mammary gland ECM
remodeling, stiffness, and mechanosignaling in normal development
and tumor progression. Cold Spring Harb Perspect Biol.
3(a003228)2011.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Koledova Z, Zhang X, Streuli C, Clarke RB,
Klein OD, Werb Z and Lu P: SPRY1 regulates mammary epithelial
morphogenesis by modulating EGFR-dependent stromal paracrine
signaling and ECM remodeling. Proc Natl Acad Sci USA.
113:E5731–E5740. 2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Pupo M, Pisano A, Lappano R, Santolla MF,
De Francesco EM, Abonante S, Rosano C and Maggiolini M: Bisphenol A
induces gene expression changes and proliferative effects through
GPER in breast cancer cells and cancer-associated fibroblasts.
Environ Health Perspect. 120:1177–1182. 2012.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Wormsbaecher C, Hindman AR, Avendano A,
Cortes-Medina M, Jones CE, Bushman A, Onua L, Kovalchin CE, Murphy
AR, Helber HL, et al: In utero estrogenic endocrine disruption
alters the stroma to increase extracellular matrix density and
mammary gland stiffness. Breast Cancer Res. 22(41)2020.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Wadia PR, Cabaton NJ, Borrero MD, Rubin
BS, Sonnenschein C, Shioda T and Soto AM: Low-dose BPA exposure
alters the mesenchymal and epithelial transcriptomes of the mouse
fetal mammary gland. PLoS One. 8(e63902)2013.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Hyun M, Rathor L, Kim HJ, McElroy T, Hwang
KH, Wohlgemuth S, Curry S, Xiao R, Leeuwenburgh C, Heo JD and Han
SM: Comparative toxicities of BPA, BPS, BPF, and TMBPF in the
nematode Caenorhabditis elegans and mammalian fibroblast cells.
Toxicology. 461(152924)2021.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Kim JY, Shin GS, Kim CH, Kim MJ, An MJ,
Lee HM and Kim JW: The cytotoxic effects of bisphenol A
alternatives in human lung fibroblast MRC5 cells. Mol Cell Toxicol.
17:267–276. 2021.
|
|
60
|
Li Q and Spalding KL: The regulation of
adipocyte growth in white adipose tissue. Front Cell Dev Biol.
10(1003219)2022.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Vaysse C, Lømo J, Garred Ø, Fjeldheim F,
Lofteroed T, Schlichting E, McTiernan A, Frydenberg H, Husøy A,
Lundgren S, et al: Inflammation of mammary adipose tissue occurs in
overweight and obese patients exhibiting early-stage breast cancer.
NPJ Breast Cancer. 3(19)2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Yang M, Chen M, Wang J, Xu M, Sun J, Ding
L, Lv X, Ma Q, Bi Y, Liu R, et al: Bisphenol A promotes adiposity
and inflammation in a nonmonotonic dose-response way in 5-week-old
male and female C57BL/6J mice fed a low-calorie diet.
Endocrinology. 157:2333–2345. 2016.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Chetrite GS, Cortes-Prieto J, Philippe JC,
Wright F and Pasqualini JR: Comparison of estrogen concentrations,
estrone sulfatase and aromatase activities in normal, and in
cancerous, human breast tissues. J Steroid Biochem Mol Biol.
72:23–27. 2000.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Humphries MP, Jordan VC and Speirs V:
Obesity and male breast cancer: Provocative parallels? BMC Med.
13(134)2015.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Hu Y, Liu L, Chen Y, Zhang X, Zhou H, Hu
S, Li X, Li M, Li J, Cheng S, et al: Cancer-cell-secreted
miR-204-5p induces leptin signalling pathway in white adipose
tissue to promote cancer-associated cachexia. Nat Commun.
14(5179)2023.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Gao Y, Chen X, He Q, Gimple RC, Liao Y,
Wang L, Wu R, Xie Q, Rich JN, Shen K and Yuan Z: Adipocytes promote
breast tumorigenesis through TAZ-dependent secretion of Resistin.
Proc Natl Acad Sci USA. 117:33295–33304. 2020.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Zhu Q, Zhu Y, Hepler C, Zhang Q, Park J,
Gliniak C, Henry GH, Crewe C, Bu D, Zhang Z, et al: Adipocyte
mesenchymal transition contributes to mammary tumor progression.
Cell Rep. 40(111362)2022.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Dirat B, Bochet L, Dabek M, Daviaud D,
Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S,
et al: Cancer-associated adipocytes exhibit an activated phenotype
and contribute to breast cancer invasion. Cancer Res. 71:2455–2465.
2011.PubMed/NCBI View Article : Google Scholar
|
|
69
|
De Palma M, Biziato D and Petrova TV:
Microenvironmental regulation of tumour angiogenesis. Nat Rev
Cancer. 17:457–474. 2017.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Fujisaki K, Fujimoto H, Sangai T,
Nagashima T, Sakakibara M, Shiina N, Kuroda M, Aoyagi Y and
Miyazaki M: Cancer-mediated adipose reversion promotes cancer cell
migration via IL-6 and MCP-1. Breast Cancer Res Treat. 150:255–263.
2015.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Todorović-Raković N and Milovanović J:
Interleukin-8 in breast cancer progression. J Interferon Cytokine
Res. 33:563–570. 2013.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Williams GP and Darbre PD: Low-dose
environmental endocrine disruptors, increase aromatase activity,
estradiol biosynthesis and cell proliferation in human breast
cells. Mol Cell Endocrinol. 486:55–64. 2019.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Linehan C, Gupta S, Samali A and O'Connor
L: Bisphenol A-mediated suppression of LPL gene expression inhibits
triglyceride accumulation during adipogenic differentiation of
human adult stem cells. PLoS One. 7(e36109)2012.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Ahmed F, Sarsenbayeva A, Katsogiannos P,
Aguer C and Pereira MJ: The effects of bisphenol A and bisphenol S
on adipokine expression and glucose metabolism in human adipose
tissue. Toxicology. 445(152600)2020.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Masuno H, Iwanami J, Kidani T, Sakayama K
and Honda K: Bisphenol a accelerates terminal differentiation of
3T3-L1 cells into adipocytes through the phosphatidylinositol
3-kinase pathway. Toxicol Sci. 84:319–327. 2005.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Sargis RM, Johnson DN, Choudhury RA and
Brady MJ: Environmental endocrine disruptors promote adipogenesis
in the 3T3-L1 cell line through glucocorticoid receptor activation.
Obesity (Silver Spring). 18:1283–1288. 2010.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Ohlstein JF, Strong AL, McLachlan JA,
Gimble JM, Burow ME and Bunnell BA: Bisphenol A enhances adipogenic
differentiation of human adipose stromal/stem cells. J Mol
Endocrinol. 53:345–353. 2014.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Ahmed S and Atlas E: Bisphenol S- and
bisphenol A-induced adipogenesis of murine preadipocytes occurs
through direct peroxisome proliferator-activated receptor gamma
activation. Int J Obes (Lond). 40:1566–1573. 2016.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Salehpour A, Shidfar F, Hedayati M,
Neshatbini Tehrani A, Farshad AA and Mohammadi S: Bisphenol A
enhances adipogenic signaling pathways in human mesenchymal stem
cells. Genes Environ. 42(13)2020.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Cohen IC, Cohenour ER, Harnett KG and
Schuh SM: BPA, BPAF and TMBPF alter adipogenesis and fat
accumulation in human mesenchymal stem cells, with implications for
obesity. Int J Mol Sci. 22(5363)2021.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Pham DV and Park PH: Adiponectin triggers
breast cancer cell death via fatty acid metabolic reprogramming. J
Exp Clin Cancer Res. 41(9)2022.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Kim Y and Park CW: Mechanisms of
adiponectin action: Implication of adiponectin receptor agonism in
diabetic kidney disease. Int J Mol Sci. 20(1782)2019.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Hugo ER, Brandebourg TD, Woo JG, Loftus J,
Alexander JW and Ben-Jonathan N: Bisphenol A at environmentally
relevant doses inhibits adiponectin release from human adipose
tissue explants and adipocytes. Environ Health Perspect.
116:1642–1647. 2008.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Lim S, Bae JH, Chun EJ, Kim H, Kim SY, Kim
KM, Choi SH, Park KS, Florez JC and Jang HC: Differences in
pancreatic volume, fat content, and fat density measured by
multidetector-row computed tomography according to the duration of
diabetes. Acta Diabetol. 51:739–748. 2014.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Kimata K, Sakakura T, Inaguma Y, Kato M
and Nishizuka Y: Participation of two different mesenchymes in the
developing mouse mammary gland: Synthesis of basement membrane
components by fat pad precursor cells. J Embryol Exp Morphol.
89:243–257. 1985.PubMed/NCBI
|
|
86
|
Miyawaki J, Sakayama K, Kato H, Yamamoto H
and Masuno H: Perinatal and postnatal exposure to bisphenol a
increases adipose tissue mass and serum cholesterol level in mice.
J Atheroscler Thromb. 14:245–252. 2007.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Vandenberg LN, Maffini MV, Wadia PR,
Sonnenschein C, Rubin BS and Soto AM: Exposure to environmentally
relevant doses of the xenoestrogen bisphenol-A alters development
of the fetal mouse mammary gland. Endocrinology. 148:116–127.
2007.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Munoz-de-Toro M, Markey C, Wadia PR, Luque
EH, Rubin BS, Sonnenschein C and Soto AM: Perinatal exposure to
bisphenol-A alters peripubertal mammary gland development in mice.
Endocrinology. 146:4138–4147. 2005.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Ramskov Tetzlaff CN, Svingen T, Vinggaard
AM, Rosenmai AK and Taxvig C: Bisphenols B, E, F, and S and
4-cumylphenol induce lipid accumulation in mouse adipocytes
similarly to bisphenol A. Environ Toxicol. 35:543–552.
2020.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Frühbeck G, Méndez-Giménez L,
Fernández-Formoso JA, Fernández S and Rodríguez A: Regulation of
adipocyte lipolysis. Nutr Res Rev. 27:63–93. 2014.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Martínez M, Blanco J, Rovira J, Kumar V,
Domingo JL and Schuhmacher M: Bisphenol A analogues (BPS and BPF)
present a greater obesogenic capacity in 3T3-L1 cell line. Food
Chem Toxicol. 140(111298)2020.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Drobna Z, Talarovicova A, Schrader HE,
Fennell TR, Snyder RW and Rissman EF: Bisphenol F has different
effects on preadipocytes differentiation and weight gain in adult
mice as compared with Bisphenol A and S. Toxicology. 420:66–72.
2019.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Chernis N, Masschelin P, Cox AR and Hartig
SM: Bisphenol AF promotes inflammation in human white adipocytes.
Am J Physiol Cell Physiol. 318:C63–C72. 2020.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Leon-Ferre RA, Jonas SF, Salgado R, Loi S,
de Jong V, Carter JM, Nielsen TO, Leung S, Riaz N, Chia S, et al:
Tumor-infiltrating lymphocytes in triple-negative breast cancer.
JAMA. 331:1135–1144. 2024.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Valenza C, Taurelli Salimbeni B, Santoro
C, Trapani D, Antonarelli G and Curigliano G: Tumor infiltrating
lymphocytes across breast cancer subtypes: Current Issues for
biomarker assessment. Cancers (Basel). 15(767)2023.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Qiu SQ, Waaijer SJH, Zwager MC, de Vries
EGE, van der Vegt B and Schröder CP: Tumor-associated macrophages
in breast cancer: Innocent bystander or important player? Cancer
Treat Rev. 70:178–189. 2018.PubMed/NCBI View Article : Google Scholar
|
|
97
|
No authors listed. Estrogen
receptor-positive breast cancer subtypes show differential
macrophage functions. Nat Cancer. 4:450–451. 2023.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Tran HTT, Herz C and Lamy E: Long-term
exposure to ‘low-dose’ bisphenol A decreases mitochondrial DNA copy
number, and accelerates telomere shortening in human CD8 + T cells.
Sci Rep. 10(15786)2020.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Kim H, Kim HS and Moon WK: Comparison of
transcriptome expression alterations by chronic exposure to
low-dose bisphenol A in different subtypes of breast cancer cells.
Toxicol Appl Pharmacol. 385(114814)2019.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Bouzidi L, Triki H, Charfi S, Kridis WB,
Derbel M, Ayadi L, Sellami-Boudawara T and Cherif B: Prognostic
value of natural killer cells besides tumor-infiltrating
lymphocytes in breast cancer tissues. Clin Breast Cancer.
21:e738–e747. 2021.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Kim IS, Gao Y, Welte T, Wang H, Liu J,
Janghorban M, Sheng K, Niu Y, Goldstein A, Zhao N, et al:
Immuno-subtyping of breast cancer reveals distinct myeloid cell
profiles and immunotherapy resistance mechanisms. Nat Cell Biol.
21:1113–1126. 2019.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Balistrieri A, Hobohm L, Srivastava T,
Meier A and Corriden R: Alterations in human neutrophil function
caused by bisphenol A. Am J Physiol Cell Physiol. 315:C636–C642.
2018.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Chanmee T, Ontong P, Konno K and Itano N:
Tumor-associated macrophages as major players in the tumor
microenvironment. Cancers (Basel). 6:1670–1690. 2014.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Palacios-Arreola MI, Nava-Castro KE,
Río-Araiza VHD, Pérez-Sánchez NY and Morales-Montor J: A single
neonatal administration of Bisphenol A induces higher tumour weight
associated to changes in tumour microenvironment in the adulthood.
Sci Rep. 7(10573)2017.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Kim H, Kim HS, Piao YJ and Moon WK:
Bisphenol A promotes the invasive and metastatic potential of
ductal carcinoma in situ and protumorigenic polarization of
macrophages. Toxicol Sci. 170:283–295. 2019.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Pahović PŠ, Iulini M, Maddalon A, Galbiati
V, Buoso E, Dolenc MS and Corsini E: In vitro effects of bisphenol
analogs on immune cells activation and Th differentiation. Endocr
Metab Immune Disord Drug Targets. 23:1750–1761. 2023.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Oshi M, Gandhi S, Yan L, Tokumaru Y, Wu R,
Yamada A, Matsuyama R, Endo I and Takabe K: Abundance of reactive
oxygen species (ROS) is associated with tumor aggressiveness,
immune response, and worse survival in breast cancer. Breast Cancer
Res Treat. 194:231–241. 2022.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Qiu W, Shao H, Lei P, Zheng C, Qiu C, Yang
M and Zheng Y: Immunotoxicity of bisphenol S and F are similar to
that of bisphenol A during zebrafish early development.
Chemosphere. 194:1–8. 2018.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Dontu G and Ince TA: Of mice and women: A
comparative tissue biology perspective of breast stem cells and
differentiation. J Mammary Gland Biol Neoplasia. 20:51–62.
2015.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Cardiff RD and Wellings SR: The
comparative pathology of human and mouse mammary glands. J Mammary
Gland Biol Neoplasia. 4:105–122. 1999.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Roberts GC, Morris PG, Moss MA, Maltby SL,
Palmer CA, Nash CE, Smart E, Holliday DL and Speirs V: An
evaluation of matrix-containing and humanised matrix-free
3-dimensional cell culture systems for studying breast cancer. PLoS
One. 11(e0157004)2016.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Russo J and Russo IH: Genotoxicity of
steroidal estrogens. Trends Endocrinol Metab. 15:211–214.
2004.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Sachs N and Clevers H: Organoid cultures
for the analysis of cancer phenotypes. Curr Opin Genet Dev.
24:68–73. 2014.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Reddington R, Galer M, Hagedorn A, Liu P,
Barrack S, Husain E, Sharma R, Speirs V and Masannat Y: Incidence
of male breast cancer in Scotland over a twenty-five-year period
(1992-2017). Eur J Surg Oncol. 46:1546–1550. 2020.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Roberts S, Peyman S and Speirs V: Current
and emerging 3D models to study breast cancer. Adv Exp Med Biol.
1152:413–427. 2019.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Weigelt B, Ghajar CM and Bissell MJ: The
need for complex 3D culture models to unravel novel pathways and
identify accurate biomarkers in breast cancer. Adv Drug Deliv Rev.
69-70:42–51. 2014.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Tang M, Jiang S, Huang X, Ji C, Gu Y, Qi
Y, Xiang Y, Yao E, Zhang N, Berman E, et al: Integration of 3D
bioprinting and multi-algorithm machine learning identified glioma
susceptibilities and microenvironment characteristics. Cell Discov.
10(39)2024.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Huh D, Hamilton GA and Ingber DE: From 3D
cell culture to organs-on-chips. Trends Cell Biol. 21:745–754.
2011.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Ståhl PL, Salmén F, Vickovic S, Lundmark
A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss
M, et al: Visualization and analysis of gene expression in tissue
sections by spatial transcriptomics. Science. 353:78–82.
2016.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Reed AD, Pensa S, Steif A, Stenning J,
Kunz DJ, Porter LJ, Hua K, He P, Twigger AJ, Siu AJQ, et al: A
single-cell atlas enables mapping of homeostatic cellular shifts in
the adult human breast. Nat Genet. 56:652–662. 2024.PubMed/NCBI View Article : Google Scholar
|
|
121
|
EFSA Panel on Food Contact Materials,
Enzymes Flavourings and Processing Aids (CEF). Scientific opinion
on the risks to public health related to the presence of bisphenol
A (BPA) in foodstuffs. EFSA J. 13(3978)2015.
|
|
122
|
Dueñas-Moreno J, Mora A, Kumar M, Meng XZ
and Mahlknecht J: Worldwide risk assessment of phthalates and
bisphenol A in humans: The need for updating guidelines. Environ
Int. 181(108294)2023.PubMed/NCBI View Article : Google Scholar
|