|
1
|
Baumstark-Khan C: Radiation biology. In:
Encyclopedia of Astrobiology. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp2113-2115, 2015.
|
|
2
|
Joiner MC, Van der Kogel AJ and Steel GG:
Introduction: The significance of radiobiology and radiotherapy for
cancer treatment. In: Basic Clinical Radiobiology. 4th edition.
Joiner M and van der Kogel A (eds). Hodder Arnold, London, pp1-10,
2009.
|
|
3
|
Withers HR: The four R's of radiotherapy.
Adv Radiat Biol. 5:241–271. 1975.
|
|
4
|
Steel GG, McMillan TJ and Peacock JH: The
5Rs of radiobiology. Int J Radiat Biol. 56:1045–1048.
1989.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Boustani J, Grapin M, Laurent PA, Apetoh L
and Mirjolet C: The 6th R of radiobiology: Reactivation of
anti-tumor immune response. Cancers (Basel). 11(860)2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Taghizadeh-Hesary F: ‘Reinforcement’ by
tumor microenvironment: The seventh ‘R’ of radiobiology. Int J
Radiat Oncol Biol Phys. 119:727–733. 2024.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Munshi A, Hobbs M and Meyn RE: Clonogenic
cell survival assay. In: Chemosensitivity: Volume I: In Vitro
Assays. Blumenthal RD (ed). Vol 1. Humana Press, New Jersey,
pp021-028, 2005.
|
|
8
|
Puck TT and Marcus PI: Action of X-rays on
mammalian cells. J Exp Med. 103:653–666. 1956.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Franken NAP, Rodermond HM, Stap J, Haveman
J and van Bree C: Clonogenic assay of cells in vitro. Nat Protoc.
1:2315–2319. 2006.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Joiner M: Quantifying cell kill and cell
survival. In: Basic Clinical Radiobiology. Joiner M and van der
Kogel A (eds). 4th edition. Hodder Arnold, London, pp41-44,
2009.
|
|
11
|
Brix N, Samaga D, Hennel R, Gehr K,
Zitzelsberger H and Lauber K: The clonogenic assay: Robustness of
plating efficiency-based analysis is strongly compromised by
cellular cooperation. Radiat Oncol. 15(248)2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Rafehi H, Orlowski C, Georgiadis GT,
Ververis K, El-Osta A and Karagiannis TC: Clonogenic Assay:
Adherent Cells. J Vis Exp. 13(2573)2011.PubMed/NCBI View
Article : Google Scholar
|
|
13
|
Pekkola-Heino K, Kulmala J, Klemi P,
Lakkala T, Aitasalo K, Joensuu H and Grenman R: Effects of
radiation fractionation on four squamous cell carcinoma lines with
dissimilar inherent radiation sensitivity. J Cancer Res Clin Oncol.
117:597–602. 1991.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Altman MB, Stinauer MA, Javier D, Smith
BD, Herman LC, Pytynia ML, Aydogan B, Pelizzari CA, Chmura SJ and
Roeske JC: Validation of temporal optimization effects for a single
fraction of radiation in vitro. Int J Radiat Oncol Biol Phys.
75:1240–1246. 2009.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Xie L, Song X, Yu J, Wei L, Song B, Wang X
and Lv L: Fractionated irradiation induced radio-resistant
esophageal cancer EC109 cells seem to be more sensitive to
chemotherapeutic drugs. J Exp Clin Cancer Res.
28(68)2009.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Rantanen V, Grénman S, Kulmala J, Alanen
K, Lakkala T and Grénman R: Sublethal damage repair after
fractionated irradiation in endometrial cancer cell lines tested
with the 96-well plate clonogenic assay. J Cancer Res Clin Oncol.
120:712–716. 1994.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Ziemann F, Arenz A, Preising S, Wittekindt
C, Klussmann JP, Engenhart-Cabillic R and Wittig A: Increased
sensitivity of HPV-positive head and neck cancer cell lines to
x-irradiation ± Cisplatin due to decreased expression of E6 and E7
oncoproteins and enhanced apoptosis. Am J Cancer Res. 5:1017–1031.
2015.PubMed/NCBI
|
|
18
|
Bright SJ, Flint DB, Chakraborty S,
McFadden CH, Yoon DS, Bronk L, Titt U, Mohan R, Grosshans DR,
Sumazin P, et al: Nonhomologous end joining is more important than
proton linear energy transfer in dictating cell death. Int J Radiat
Oncol Biol Phys. 105:1119–1125. 2019.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Bright SJ, Flint DB, Martinus DKJ, Turner
BX, Manandhar M, Ben Kacem M, McFadden CH, Yap TA, Shaitelman SF
and Sawakuchi GO: Targeted Inhibition of DNA-PKcs, ATM, ATR, PARP,
and Rad51 modulate response to X rays and protons. Radiat Res.
198:336–346. 2022.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Gajdusek CM, Tian H, London S, Zhou D,
Rasey J and Mayberg MR: Gamma radiation effect on vascular smooth
muscle cells in culture. Int J Radiat Oncol Biol Phys. 36:821–828.
1996.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Zhou K, Wei Y, Li X and Yang X: MiR-223-3p
targets FOXO3a to inhibit radiosensitivity in prostate cancer by
activating glycolysis. Life Sci. 282(119798)2021.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Grenman R, Burk D, Virolainen E, Wagner
JG, Lichter AS and Carey TE: Radiosensitivity of head and neck
cancer cells in vitro. A 96-well plate clonogenic cell assay for
squamous cell carcinoma. Arch Otolaryngol Head Neck Surg.
114:427–431. 1988.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Liu M, Lee S, Liu B, Wang H, Dong L and
Wang Y: Ku-dependent non-homologous end-joining as the major
pathway contributes to sublethal damage repair in mammalian cells.
Int J Radiat Biol. 91:867–871. 2015.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Schmidberger H, Rave-Fränk M, Lehmann JJ,
Weiss E, Gerl L, Dettmer N, Glomme S and Hess CF: Lack of
interferon beta-induced radiosensitization in four out of five
human glioblastoma cell lines. Int J Radiat Oncol Biol Phys.
55:1348–1357. 2003.PubMed/NCBI View Article : Google Scholar
|
|
25
|
El Bezawy R, Tinelli S, Tortoreto M, Doldi
V, Zuco V, Folini M, Stucchi C, Rancati T, Valdagni R, Gandellini P
and Zaffaroni N: miR-205 enhances radiation sensitivity of prostate
cancer cells by impairing DNA damage repair through PKCε and ZEB1
inhibition. J Exp Clin Cancer Res. 38(51)2019.PubMed/NCBI View Article : Google Scholar
|
|
26
|
El Bezawy R, Cominetti D, Fenderico N,
Zuco V, Beretta GL, Dugo M, Arrighetti N, Stucchi C, Rancati T,
Valdagni R, et al: miR-875-5p counteracts epithelial-to-mesenchymal
transition and enhances radiation response in prostate cancer
through repression of the EGFR-ZEB1 axis. Cancer Lett. 395:53–62.
2017.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Li Q, Furusawa Y, Kanazawa M, Kanai T,
Kitagawa A, Aoki M, Urakabe E, Tomitani T, Sato S, Yoshimoto M and
Wei Z: Enhanced efficiency in cell killing at the penetration
depths around the Bragg peak of a radioactive 9C-ion beam. Int J
Radiat Oncol Biol Phys. 63:1237–1244. 2005.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Oleinick NL, Biswas T, Patel R, Tao M,
Patel R, Weeks L, Sharma N, Dowlati A, Gerson SL, Fu P, et al:
Radiosensitization of non-small-cell lung cancer cells and
xenografts by the interactive effects of pemetrexed and
methoxyamine. Radiother Oncol. 121:335–341. 2016.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Keng PC, Phipps R and Penney DP: In vitro
radiation sensitivity of mouse lung fibroblasts isolated by flow
cytometry. Int J Radiat Oncol Biol Phys. 31:519–523.
1995.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Robson H, Spence K, Anderson E, Potten CS
and Hendry JH: Differential influence of TGFbeta1 and TGFbeta3
isoforms on cell cycle kinetics and postirradiation recovery of
normal and malignant colorectal epithelial cells. Int J Radiat
Oncol Biol Phys. 38:183–190. 1997.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Schmidberger H, Rave-Fr̈ank M, Lehmann J,
Schweinfurth S, Rehring E, Henckel K and Hess CF: The combined
effect of interferon beta and radiation on five human tumor cell
lines and embryonal lung fibroblasts. Int J Radiat Oncol Biol Phys.
43:405–412. 1999.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Akudugu JM, Serafin AM and Böhm LJF: In
vitro radiosensitization by pentoxifylline does not depend on p53
status. Int J Radiat Biol. 89:462–470. 2013.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Seo Y, Tamari K, Takahashi Y, Minami K,
Isohashi F, Suzuki O, Sumida I and Ogawa K: Impact of accumulated
alterations in driver and passenger genes on response to radiation
therapy. Br J Radiol. 93(20190625)2020.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Waissi W, Amé JC, Mura C, Noël G and
Burckel H: Gemcitabine-based chemoradiotherapy enhanced by a PARP
inhibitor in pancreatic cancer cell lines. Int J Mol Sci.
22(6825)2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Wang HH, Wu ZQ, Qian D, Zaorsky NG, Qiu
MH, Cheng JJ, Jiang C, Wang J, Zeng XL, Liu CL, et al: Ablative
hypofractionated radiation therapy enhances non-small cell lung
cancer cell killing via preferential stimulation of necroptosis in
vitro and in vivo. Int J Radiat Oncol Biol Phys. 101:49–62.
2018.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Raitanen M, Rantanen V, Kulmala J,
Pulkkinen J, Klemi P, Grénman S and Grénman R: Paclitaxel combined
with fractionated radiation in vitro: A study with vulvar squamous
cell carcinoma cell lines. Int J Cancer. 97:853–857.
2002.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Plasswilm L, Cordes N and Sauer R:
Schedule-dependent interaction of paclitaxel (Taxol) and
irradiation in vitro. Radiat Oncol Investig. 6:10–17.
1998.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Cordes N, Plasswilm L and Sauer R:
Interaction of paclitaxel (Taxol) and irradiation. In-vitro
differences between tumor and fibroblastic cells. Strahlenther
Onkol. 175:175–181. 1999.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Wang H, Li J, Qu A, Liu J, Zhao Y and Wang
J: The different biological effects of single, fractionated and
continuous low dose rate irradiation on CL187 colorectal cancer
cells. Radiat Oncol. 8(196)2013.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Pekkola-Heino K, Servomaa K, Kiuru A and
Grenman R: Sublethal damage repair capacity in carcinoma cell lines
with p53 mutations. Head Neck. 20:298–303. 1998.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Mothersill C and Seymour CB: Bystander and
delayed effects after fractionated radiation exposure. Radiat Res.
158:626–633. 2002.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Stuschke M, Budach V, Klaes W and Sack H:
Radiosensitivity, repair capacity, and stem cell fraction in human
soft tissue tumors: An in vitro study using multicellular spheroids
and the colony assay. Int J Radiat Oncol Biol Phys. 23:69–80.
1992.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Van Bree C, Franken NAP, Bakker PJM,
Klomp-Tukker LJ, Barendsen GW and Kipp JBA: Hyperthermia and
incorporation of halogenated pyrimidines: Radiosensitization in
cultured rodent and human tumor cells. Int J Radiat Oncol Biol
Phys. 39:489–496. 1997.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Grégoire V, Beauduin M, Bruniaux M, De
Coster B, Octave Prignot M and Scalliet P: Radiosensitization of
mouse sarcoma cells by fludarabine (F-ara-A) or gemcitabine (dFdC),
two nucleoside analogues, is not mediated by an increased induction
or a repair inhibition of DNA double-strand breaks as measured by
pulsed-field gel electrophoresis. Int J Radiat Biol. 73:511–520.
1998.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Fenton BM, Lord EM and Paoni SF: Effects
of radiation on tumor intravascular oxygenation, vascular
configuration, development of hypoxia, and clonogenic survival.
Radiat Res. 155:360–368. 2001.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Skourou C, Hoopes PJ, Gibbs-Strauss SL,
Gladstone DJ, Strawbridge R and Paulsen KD: High dose rate
radiation treatment of experimental intramuscular prostate
carcinoma. Int J Radiat Biol. 85:330–337. 2009.PubMed/NCBI View Article : Google Scholar
|
|
47
|
van Oorschot B, Hovingh SE, Rodermond H,
Güçlü A, Losekoot N, Geldof AA, Barendsen GW, Stalpers LJ and
Franken NA: Decay of γ-H2AX foci correlates with potentially lethal
damage repair in prostate cancer cells. Oncol Rep. 29:2175–2180.
2013.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Gabikian P, Tyler BM, Zhang I, Li KW, Brem
H and Walter KA: Radiosensitization of malignant gliomas following
intracranial delivery of paclitaxel biodegradable polymer
microspheres. J Neurosurg. 120:1078–1085. 2014.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Miyakawa A, Shibamoto Y, Otsuka S and
Iwata H: Applicability of the linear-quadratic model to single and
fractionated radiotherapy schedules: an experimental study. J
Radiat Res. 55:451–454. 2014.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Parfitt SL, Milner RJ, Salute ME,
Hintenlang DE, Farese JP, Bacon NJ, Bova FJ, Rajon DA and Lurie DM:
Radiosensitivity and capacity for radiation-induced sublethal
damage repair of canine transitional cell carcinoma (TCC) cell
lines. Vet Comp Oncol. 9:232–240. 2011.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Pearce AG, Segura TM, Rintala AC,
Rintala-Maki ND and Lee H: The generation and characterization of a
radiation-resistant model system to study radioresistance in human
breast cancer cells. Radiat Res. 156:739–750. 2001.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Hedman M, Bergqvist M, Brattström D and
Brodin O: Fractionated irradiation of five human lung cancer cell
lines and prediction of survival according to a radiobiology model.
Anticancer Res. 31:1125–1130. 2011.PubMed/NCBI
|
|
53
|
Boehringer-Wyss N, Clarkson SG and Allal
AS: No benefits of ultrafractionation in two head-and-neck cancer
cell lines with different inherent radiosensitivity. Int J Radiat
Oncol Biol Phys. 52:1099–1103. 2002.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Kuwahara Y, Mori M, Oikawa T, Shimura T,
Ohtake Y, Mori S, Ohkubo Y and Fukumoto M: The modified
high-density survival assay is the useful tool to predict the
effectiveness of fractionated radiation exposure. J Radiat Res.
51:297–302. 2010.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Kostron H, Swartz MR, Miller DC and
Martuza RL: The interaction of hematoporphyrin derivative, light,
and ionizing radiation in a rat glioma model. Cancer. 57:964–970.
1986.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Fox NE and Twentyman PR: A comparison of
clonogenic and radionuclide uptake assays for determining the
radiation response of human small-cell lung cancer xenografts and
cell lines. Br J Radiol. 60:381–388. 1987.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Choy H, Rodriguez FF, Koester S,
Hilsenbeck S and Von Hoff DD: Investigation of taxol as a potential
radiation sensitizer. Cancer. 71:3774–3778. 1993.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Stromberg JS, Lee YJ, Armour EP, Martinez
AA and Corry PM: Lack of radiosensitization after paclitaxel
treatment of three human carcinoma cell lines. Cancer.
75:2262–2268. 1995.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Banasiak D, Barnetson AR, Odell RA,
Mameghan H and Russell PJ: Comparison between the clonogenic, MTT,
and SRB assays for determining radiosensitivity in a panel of human
bladder cancer cell lines and a ureteral cell line. Radiat Oncol
Investig. 7:77–85. 1999.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Mayberg MR, London S, Rasey J and Gajdusek
C: Inhibition of rat smooth muscle proliferation by radiation after
arterial injury: temporal characteristics in vivo and in vitro.
Radiat Res. 153:153–163. 2000.PubMed/NCBI View Article : Google Scholar
|
|
61
|
McKelvey KJ, Hudson AL, Donaghy H, Stoner
SP, Wheeler HR, Diakos CI and Howell VM: Differential effects of
radiation fractionation regimens on glioblastoma. Radiat Oncol.
17(17)2022.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Hall EJ and Giaccia AJ: Molecular
mechanisms of DNA and chromosome damage and repair. In:
Radiobiology for the Radiologist. Hall EJ and Giaccia AJ (eds). 7th
edition. Lippincott Williams & Wilkins, Philadelphia, pp12-35,
2012.
|
|
63
|
Hall EJ and Giaccia AJ: Cell survival
curves. In: Radiobiology for the Radiologist. Hall EJ and Giaccia
AJ (eds). 7th edition. Lippincott Williams & Wilkins,
Philadelphia, pp35-54, 2012.
|
|
64
|
McMahon SJ: The linear quadratic model:
Usage, interpretation and challenges. Phys Med Biol.
64(01TR01)2018.PubMed/NCBI View Article : Google Scholar
|
|
65
|
van Leeuwen CM, Oei AL, Crezee J, Bel A,
Franken NAP, Stalpers LJA and Kok HP: The alfa and beta of tumours:
A review of parameters of the linear-quadratic model, derived from
clinical radiotherapy studies. Radiat Oncol. 13(96)2018.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Unkel S, Belka C and Lauber K: On the
analysis of clonogenic survival data: Statistical alternatives to
the linear-quadratic model. Radiat Oncol. 11(11)2016.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Mán I, Szebeni GJ, Plangár I, Szabó ER,
Tőkés T, Szabó Z, Nagy Z, Fekete G, Fajka-Boja R, Puskás LG, et al:
Novel real-time cell analysis platform for the dynamic monitoring
of ionizing radiation effects on human tumor cell lines and primary
fibroblasts. Mol Med Rep. 12:4610–4619. 2015.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Sürer Şİ, Elçitepe TB, Akçay D, Daşkın E,
Çalıbaşı Kocal G, Arıcan Alıcıkuş Z, Eskiizmir G, Yapıcı K and
Başbınar Y: A promising, novel radiosensitizer nanodrug complex for
oral cavity cancer: Cetuximab and cisplatin-conjugated gold
nanoparticles. Balkan Med J. 38:278–286. 2021.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Alexiou G, Vartholomatos E, I Tsamis K,
Peponi E, Markopoulos G, A Papathanasopoulou V, Tasiou I, Ragos V,
Tsekeris P, Kyritsis AP and Galani V: Combination treatment for
glioblastoma with temozolomide, DFMO and radiation. J BUON.
24:397–404. 2019.PubMed/NCBI
|
|
70
|
Vávrová J, Zárybnická L, Jošt P, Tichý A,
Řezáčová M, Šinkorová Z and Pejchal J: Comparison of the
radiosensitizing effect of ATR, ATM and DNA-PK kinase inhibitors on
cervical carcinoma cells. Folia Biol (Praha). 62:167–174.
2016.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Alexiou GA, Tsamis KI, Vartholomatos E,
Peponi E, Tzima E, Tasiou I, Lykoudis E, Tsekeris P and Kyritsis
AP: Combination treatment of TRAIL, DFMO and radiation for
malignant glioma cells. J Neurooncol. 123:217–224. 2015.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Gupta S and Ahmed MM: Targeting
radiation-induced upstream stimulatory factor-1 by histone
deacetylase inhibitors to reverse radioresistance in prostate
cancer. Cancer Rep (Hoboken). 5(e1553)2022.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Liu X, Wang Q, Liu B, Zheng X, Li P, Zhao
T, Jin X, Ye F, Zhang P, Chen W and Li Q: Genistein inhibits
radiation-induced invasion and migration of glioblastoma cells by
blocking the DNA-PKcs/Akt2/Rac1 signaling pathway. Radiother Oncol.
155:93–104. 2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Barrado M, Blanco-Luquin I, Navarrete PA,
Visus I, Guerrero-Setas D, Escors D, Kochan G and Arias F:
Radiopotentiation of enzalutamide over human prostate cancer cells
as assessed by real-time cell monitoring. Rep Pract Oncol
Radiother. 24:221–226. 2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Zhang M, Guo X, Gao Y, Lu D and Li W:
Tumor cell-accelerated senescence is associated with DNA-PKcs
status and telomere dysfunction induced by radiation. Dose
Response. 16(1559325818771527)2018.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Tubin S, Ahmed MM and Gupta S: Radiation
and hypoxia-induced non-targeted effects in normoxic and hypoxic
conditions in human lung cancer cells. Int J Radiat Biol.
94:199–211. 2018.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Shi T, Li L, Zhou G, Wang C, Chen X, Zhang
R, Xu J, Lu X, Jiang H and Chen J: Toll-like receptor 5 agonist
CBLB502 induces radioprotective effects in vitro. Acta Biochim
Biophys Sin (Shanghai). 49:487–495. 2017.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Ibahim MJ, Crosbie JC, Yang Y, Zaitseva M,
Stevenson AW, Rogers PAW and Paiva P: An evaluation of dose
equivalence between synchrotron microbeam radiation therapy and
conventional broad beam radiation using clonogenic and cell
impedance assays. PLoS One. 9(e100547)2014.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Roa W, Yang X, Guo L, Huang B,
Khatibisepehr S, Gabos S, Chen J and Xing J: Real-time
cell-impedance sensing assay as an alternative to clonogenic assay
in evaluating cancer radiotherapy. Anal Bioanal Chem.
400:2003–2011. 2011.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Scrace S, O'Neill E, Hammond EM and Pires
IM: Use of the xCELLigence system for real-time analysis of changes
in cellular motility and adhesion in physiological conditions.
Methods Mol Biol. 1046:295–306. 2013.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Hamidi H, Lilja J and Ivaska J: Using
xCELLigence RTCA instrument to measure cell adhesion. Bio Protoc.
7(e2646)2017.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Atienza JM, Yu N, Kirstein SL, Xi B, Wang
X, Xu X and Abassi YA: Dynamic and label-free cell-based assays
using the real-time cell electronic sensing system. Assay Drug Dev
Technol. 4:597–607. 2006.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Reid P, Wilson P, Li Y, Marcu LG,
Staudacher AH, Brown MP and Bezak E: Experimental investigation of
radiobiology in head and neck cancer cell lines as a function of
HPV status, by MTT assay. Sci Rep. 8(7744)2018.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Kho D, MacDonald C, Johnson R, Unsworth
CP, O'Carroll SJ, du Mez E, Angel CE and Graham ES: Application of
xCELLigence RTCA biosensor technology for revealing the profile and
window of drug responsiveness in real time. Biosensors (Basel).
5:199–222. 2015.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Tesei A, Sarnelli A, Arienti C, Menghi E,
Medri L, Gabucci E, Pignatta S, Falconi M, Silvestrini R, Zoli W,
et al: In vitro irradiation system for radiobiological experiments.
Radiat Oncol. 8(257)2013.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Hao J, Magnelli A, Godley A and Yu JS: Use
of a linear accelerator for conducting in vitro radiobiology
experiments. J Vis Exp: 10.3791/59514, 2019.
|
|
87
|
Klein EE, Hanley J, Bayouth J, Yin FF,
Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B, et al:
Task group 142 report: Quality assurance of medical accelerators.
Med Phys. 36:4197–4212. 2009.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Limame R, Wouters A, Pauwels B, Fransen E,
Peeters M, Lardon F, De Wever O and Pauwels P: Comparative analysis
of dynamic cell viability, migration and invasion assessments by
novel real-time technology and classic endpoint assays. PLoS One.
7(e46536)2012.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Qi XS, Yang Q, Lee SP, Li XA and Wang D:
An estimation of radiobiological parameters for head-and-neck
cancer cells and the clinical implications. Cancers (Basel).
4:566–580. 2012.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Fowler JF and Harari PM: Confirmation of
improved local-regional control with altered fractionation in head
and neck cancer. Int J Radiat Oncol Biol Phys. 48:3–6.
2000.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Mohan R, Wu Q, Manning M and
Schmidt-Ullrich R: Radiobiological considerations in the design of
fractionation strategies for intensity-modulated radiation therapy
of head and neck cancers. Int J Radiat Oncol Biol Phys. 46:619–630.
2000.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Withers HR, Taylor JMG and Maciejewski B:
The hazard of accelerated tumor clonogen repopulation during
radiotherapy. Acta Oncol. 27:131–146. 1988.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Withers HR, Peters LJ, Taylor JM, Owen JB,
Morrison WH, Schultheiss TE, Keane T, OSullivan B, van Dyk J, Gupta
N, et al: Local control of carcinoma of the tonsil by radiation
therapy: An analysis of patterns of fractionation in nine
institutions. Int J Radiat Oncol Biol Phys. 33:549–562.
1995.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Klement RJ, Sonke JJ, Allgäuer M,
Andratschke N, Appold S, Belderbos J, Belka C, Dieckmann K, Eich
HT, Flentje M, et al: Estimation of the α/β ratio of non-small cell
lung cancer treated with stereotactic body radiotherapy. Radiother
Oncol. 142:210–216. 2020.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Cui M, Li Y, Liu J and Sun D: Elevated α/β
ratio after hypofractionated radiotherapy correlated with DNA
damage repairment in an experimental model of prostate cancer. J
Radiat Res. 65:776–786. 2024.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Cui M, Gao XS, Li X, Ma M, Qi X and
Shibamoto Y: Variability of α/β ratios for prostate cancer with the
fractionation schedule: caution against using the linear-quadratic
model for hypofractionated radiotherapy. Radiat Oncol.
17(54)2022.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Selli C, Erac Y and Tosun M: Effects of
cell seeding density on real-time monitoring of anti-proliferative
effects of transient gene silencing. J Biol Res (Thessalon).
23(20)2016.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Enrico Bena C, Del Giudice M, Grob A,
Gueudré T, Miotto M, Gialama D, Osella M, Turco E, Ceroni F, De
Martino A and Bosia C: Initial cell density encodes proliferative
potential in cancer cell populations. Sci Rep.
11(6101)2021.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Javadpour N: Limitations and problems in
clonogenic assays and chemosensitivity for cancer. Urology.
22:674–675. 1983.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Koch RA, Boucsein M, Brons S, Alber M and
Bahn E: A time-resolved clonogenic assay for improved cell survival
and RBE measurements. Clin Transl Radiat Oncol.
42(100662)2023.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Gutiérrez L, Stepien G, Gutiérrez L,
Pérez-Hernández M, Pardo J, Pardo J, Grazú V and de la Fuente JM:
1.09-Nanotechnology in drug discovery and development. In:
Comprehensive Medicinal Chemistry III. Elsevier, Amsterdam,
pp264-295, 2017.
|
|
102
|
Ibahim MJ, Crosbie JC, Paiva P, Yang Y,
Zaitseva M and Rogers PAW: An evaluation of novel real-time
technology as a tool for measurement of radiobiological and
radiation-induced bystander effects. Radiat Environ Biophys.
55:185–194. 2016.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Xu Z, Song Y, Jiang H, Kong Y, Li X, Chen
J and Wu Y: Regeneration of arrayed gold microelectrodes equipped
for a real-time cell analyzer. J Vis Exp: 56250, 2018.
|