|
1
|
Frąk W, Wojtasińska A, Lisińska W,
Młynarska E, Franczyk B and Rysz J: Pathophysiology of
cardiovascular diseases: New insights into molecular mechanisms of
atherosclerosis, arterial hypertension, and coronary artery
disease. Biomedicines. 10(1938)2022.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Yuyun MF, Sliwa K, Kengne AP, Mocumbi AO
and Bukhman G: Cardiovascular diseases in sub-saharan africa
compared to high-income countries: An epidemiological perspective.
Glob Heart. 15(15)2020.PubMed/NCBI View
Article : Google Scholar
|
|
3
|
Thiriet M: Cardiovascular Disease: An
Introduction. In: Vasculopathies. Biomathematical and Biomechanical
Modeling of the Circulatory and Ventilatory Systems. Vol. 8.
Springer, Cham, 2018.
|
|
4
|
Mensah GA, Roth GA and Fuster V: The
global burden of cardiovascular diseases and risk factors: 2020 and
beyond. J Am Coll Cardiol. 74:2529–2532. 2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Gaziano T, Reddy KS, Paccaud F, Horton S
and Chaturvedi V: Chapter 33 cardiovascular disease'. In Jamison
DT, Breman J, Measham AR, Alleyne G, Claeson M, Evans DB, Jha P,
Mills A and Musgrove P (eds). Disease control priorities in
developing countries, 2nd edition. Washington: World Bank,
pp645-662, 2006.
|
|
6
|
Di Cesare M, Perel P, Taylor S, Kabudula
C, Bixby H, Gaziano TA, McGhie DV, Mwangi J, Pervan B, Narula J, et
al: The heart of the world. Glob Heart. 19(11)2024.PubMed/NCBI View
Article : Google Scholar
|
|
7
|
Global Cardiovascular Risk Consortium.
Magnussen C, Ojeda FM, Leong DP, Alegre-Diaz J, Amouyel P,
Aviles-Santa L, De Bacquer D, Ballantyne CM, Bernabé-Ortiz A, et
al: Global effect of modifiable risk factors on cardiovascular
disease and mortality. N Engl J Med. 389:1273–1285. 2023.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Lindstrom M, DeCleene N, Dorsey H, Fuster
V, Johnson CO, LeGrand KE, Mensah GA, Razo C, Stark B, Varieur
Turco J and Roth GA: Global burden of cardiovascular diseases and
risks collaboration, 1990-2021. J Am Coll Cardiol. 80:2372–2425.
2022.PubMed/NCBI View Article : Google Scholar
|
|
9
|
World Health Organization (WHO): The
Global Health Observatory. Explore a World of Health Data. WHO,
Geneva, 2021.
|
|
10
|
Johansen H, Thillaiampalam S, Nguyen D and
Sambell C: Diseases of the circulatory system-hospitalization and
mortality. Health Rep. 17:49–53. 2005.PubMed/NCBI
|
|
11
|
Saito I, Yamagishi K, Kokubo Y, Yatsuya H,
Iso H, Sawada N, Inoue M and Tsugane S: Impact of cardiovascular
disease on the death certificate diagnosis of heart failure,
ischemic heart disease, and cerebrovascular disease-The Japan
public health center-based prospective study. Circ J. 87:1196–1202.
2023.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Day IN and Wilson DI: Science, medicine,
and the future: Genetics and cardiovascular risk. BMJ.
323:1409–1412. 2001.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Grejtakova D, Boronova I, Bernasovska J
and Bellosta S: PCSK9 and lipid metabolism: Genetic variants,
current therapies, and cardiovascular outcomes. Cardiovasc Drugs
Ther: Jun 22, 2024 (Epub ahead of print).
|
|
14
|
Coorey G, Figtree GA, Fletcher DF, Snelson
VJ, Vernon ST, Winlaw D, Grieve SM, McEwan A, Yang JYH, Qian P, et
al: The health digital twin to tackle cardiovascular disease-a
review of an emerging interdisciplinary field. NPJ Digit Med.
5(126)2022.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Moiseev VS, Demurov LM, Kobalava ZD,
Chistiakov DA, Tereshchenko SN, Kondrat'ev II, Korovina EA and
Nosikov VV: The polymorphism of the angiotensin-converting enzyme
gene in patients with hypertension, left ventricular hypertrophy
and the development of a myocardial infarct at a young age.
Preliminary report. Ter Arkh. 69:18–23. 1997.PubMed/NCBI(In Russian).
|
|
16
|
Sheikhy A, Fallahzadeh A, Aghaei Meybodi
HR, Hasanzad M, Tajdini M and Hosseini K: Personalized medicine in
cardiovascular disease: Review of literature. J Diabetes
MetabDisord. 20:1793–1805. 2021.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Vallée A: Envisioning the future of
personalized medicine: Role and realities of digital twins. J Med
Internet Res. 26(e50204)2024.PubMed/NCBI View
Article : Google Scholar
|
|
18
|
Thangaraj PM, Benson SH, Oikonomou EK,
Asselbergs FW and Khera R: Cardiovascular care with digital twin
technology in the era of generative artificial intelligence. Eur
Heart J. 45:4808–4821. 2024.PubMed/NCBI View Article : Google Scholar : (Epub ahead of
print).
|
|
19
|
Sel K, Osman D, Zare F, Masoumi Shahrbabak
S, Brattain L, Hahn JO, Inan OT, Mukkamala R, Palmer J, Paydarfar
D, et al: Building digital twins for cardiovascular health: From
principles to clinical impact. J Am Heart Assoc.
13(e031981)2024.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Manocha A, Bhatia M and Kumar G: Smart
monitoring solution for dengue infection control: A digital
twin-inspired approach. Comput Methods Programs Biomed.
257(108459)2024.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Banerjee S, Das D, Chatterjee P and Ghosh
U: Blockchain-enabled digital twin technology for next-generation
transportation systems. In: 2023 IEEE 26th International Symposium
on Real-Time Distributed Computing (ISORC). IEEE, pp224-229,
2023.
|
|
22
|
Liu J, Zhang T, Fan J and Lang S:
Applications of digital twin technology in AUV. In: 2023 IEEE 11th
International Conference on Computer Science and Network Technology
(ICCSNT). IEEE, pp293-297, 2023.
|
|
23
|
Botín-Sanabria DM, Mihaita AS,
Peimbert-García RE, Ramírez-Moreno MA, Ramírez-Mendoza RA and
Lozoya-Santos JDJ: Digital twin technology challenges and
applications: A comprehensive review. Remote Sens.
14(1335)2022.
|
|
24
|
Wagner T, Kittl C, Jakob J, Hiry J and
Häger U: Digital twins in power systems: A proposal for a
definition. IEEE Power Energy Mag. 22:16–23. 2024.
|
|
25
|
Sado K, Peskar J, Downey A, Khan J and
Booth K: A digital twin based forecasting framework for power flow
management in DC microgrids. Sci Rep. 15(6430)2025.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Bahrin MAK, Othman MF, Azli NHN and Talib
MF: Industry 4.0: A review on industrial automation and robotic. J
Teknol. 78:137–143. 2016.
|
|
27
|
Fuller A, Fan Z, Day C and Barlow C:
Digital twin: Enabling technologies, challenges, and open research.
IEEE Access. 8:108952–108971. 2020.
|
|
28
|
De Benedictis A, Mazzocca N, Somma A and
Strigaro C: Digital twins in healthcare: An architectural proposal
and its application in a social distancing case study. IEEE J
Biomed Health Inform. 27:5143–5154. 2023.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Sun T, He X and Li Z: Digital twin in
healthcare: Recent updates and challenges. Digit Health.
9(20552076221149651)2023.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Vallée A: Digital twin for healthcare
systems. Front Digit Health. 5(1253050)2023.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Ghatti S, Yurish LA, Shen H, Rheuban K,
Enfield KB, Facteau NR, Engel G and Dowdell K: Digital twins in
healthcare: A survey of current methods. Arch Clin Biomed Res.
7:365–338. 2023.
|
|
32
|
Ying L, Zhang L, Yang Y, Zhou L, Ren L,
Wang F, Liu R, Pang Z and Deen MJ: A novel cloud-based framework
for elderly healthcare services using digital twin. IEEE Access.
7:49088–49101. 2019.
|
|
33
|
Lehtola VV, Koeva M, Elberink SO, Raposo
P, Virtanen JP, Vahdatikhaki F and Borsci S: Digital twin of a
city: Review of technology serving city needs. Int J Appl Earth Obs
Geoinf. 114(102915)2022.
|
|
34
|
Corral-Acero J, Margara F, Marciniak M,
Rodero C, Loncaric F, Feng Y, Gilbert A, Fernandes JF, Bukhari HA,
Wajdan A, et al: The ‘digital twin’ to enable the vision of
precision cardiology. Eur Heart J. 41:4556–4564. 2020.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Gillette K, Gsell MAF, Prassl AJ,
Karabelas E, Reiter U, Reiter G, Grandits T, Payer C, Štern D,
Urschler M, et al: A Framework for the generation of digital twins
of cardiac electrophysiology from clinical 12-leads ECGs. Med Image
Anal. 71(102080)2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Lamata P: King's College London. Thousands
of cardiac ‘digital twins’ offer new insights into the heart,
2025.
|
|
37
|
Dorbala P and Iyer R: Carle Illinois
College of Medicine. Digital twinning: New machine learning
research tracks heart failure development for targeted treatment,
2024.
|
|
38
|
Sakata K, Bradley RP, Prakosa A, Yamamoto
CAP, Ali SY, Loeffler S, Tice BM, Boyle PM, Kholmovski EG, Yadav R,
et al: Assessing the arrhythmogenic propensity of fibrotic
substrate using digital twins to inform a mechanisms-based atrial
fibrillation ablation strategy. Nat Cardiovasc Res. 3:857–868.
2024.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Rudnicka Z, Proniewska K, Perkins M and
Pręgowska A: Cardiac healthcare digital twins supported by
artificial intelligence-based algorithms and extended reality: A
systematic review. Electronics. 13(866)2024.
|
|
40
|
de Lepper AGW, Buck CMA, van 't Veer M,
Huberts W, van de Vosse FN and Dekker LRC: From evidence-based
medicine to digital twin technology for predicting ventricular
tachycardia in ischaemic cardiomyopathy. J R Soc Interface.
19(20220317)2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Martin CH, Reventos-Presmanes J, Guichard
JB, Mont L, Guillem MS, Climent AM and Hernandez I: Generation of
cardiac digital twins based on noninvasive cardiac mapping. EP
Europace. 25 (Suppl 1)(euad122.643)2023.
|
|
42
|
Jones D, Snider C, Nassehi A, Yon J and
Hicks B: Characterising the digital twin: a systematic literature
review. CIRP J Manuf Sci Technol. 29:36–52. 2020.
|
|
43
|
Katsoulakis E, Wang Q, Wu H, Shahriyari L,
Fletcher R, Liu J, Achenie L, Liu H, Jackson P, Xiao Y, et al:
Digital twins for health: A scoping review. NPJ Digit Med.
7(77)2024.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Papachristou K, Katsakiori PF,
Papadimitroulas P, Strigari L and Kagadis GC: Digital twins'
advancements and applications in healthcare, towards precision
medicine. J Pers Med. 14(1101)2024.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Lim KYH, Zheng P and Chen CH: A
state-of-the-art survey of digital twin: Techniques, engineering
product lifecycle management and business innovation perspectives.
J Intell Manuf. 31:1313–1337. 2019.
|
|
46
|
Chakshu NK, Sazonov I and Nithiarasu P:
Towards enabling a cardiovascular digital twin for human systemic
circulation using inverse analysis. Biomech Model Mechanobiol.
20:449–465. 2021.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Roney CH, Sim I, Yu J, Beach M, Mehta A,
Alonso Solis-Lemus J, Kotadia I, Whitaker J, Corrado C, Razeghi O,
et al: Predicting atrial fibrillation recurrence by combining
population data and virtual cohorts of patient-specific left atrial
models. Circ Arrhythm Electrophysiol. 15(010253)2022.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Viceconti M, De Vos M, Mellone S and Geris
L: Position paper From the digital twins in healthcare to the
virtual human twin: A moon-shot project for digital health
research. IEEE J Biomed Health Inform: Oct 11, 2023 (Epub ahead of
print).
|
|
49
|
Zheng T, Azzolin L, Sánchez J, Dössel O
and Loewe A: An automated pipeline for generating fiber orientation
and region annotation in patient-specific atrial models. Curr Dir
Biomed Eng. 7:136–139. 2021.
|
|
50
|
Fathima SN: An update on myocardial
infarction. Curr Res Trends Med Sci Technol. 1(95)2021.
|
|
51
|
Thygesen K, Alpert JS, Jaffe AS, Simoons
ML, Chaitman BR and White HD: Writing Group on behalf of the Joint
ESC/ACCF/AHA/WHF Task Force for the Universal Definition of
Myocardial Infarction. Third universal definition of myocardial
infarction. Glob Heart. 7:275–295. 2012.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Li L, Camps J, Jenny Wang Z, Beetz M,
Banerjee A, Rodriguez B and Grau V: Toward enabling cardiac digital
twins of myocardial infarction using deep computational models for
inverse inference. IEEE Trans Med Imaging. 43:2466–2478.
2024.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Fu DG: Cardiac arrhythmias: Diagnosis,
symptoms, and treatments. Cell Biochem Biophys. 73:291–296.
2015.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Deng D, Arevalo HJ, Prakosa A, Callans DJ
and Trayanova NA: A feasibility study of arrhythmia risk prediction
in patients with myocardial infarction and preserved ejection
fraction. EP Europace. 18 (Suppl 4):iv60–iv66. 2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Arevalo HJ, Vadakkumpadan F, Guallar E,
Jebb A, Malamas P, Wu KC and Trayanova NA: Arrhythmia risk
stratification of patients after myocardial infarction using
personalized heart models. Nat Commun. 7(11437)2016.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Ahmadova AA: Applications of digital twins
in medicine and the ontological model of medical digital twins.
Probl Inf Soc. 15:98–105. 2024.
|
|
57
|
Hu Y, Chen J, Hu L, Li D, Yan J, Ying H,
Liang H and Wu J: Personalized heart disease detection via ECG
digital twin generation. arXiv [Preprint]: 11171, 2024.
|
|
58
|
Moore JH, Li X, Chang JH, Tatonetti NP,
Theodorescu D, Chen Y, Asselbergs FW, Venkatesan M and Wang ZP:
SynTwin: A graph-based approach for predicting clinical outcomes
using digital twins derived from synthetic patients. Pac Symp
Biocomput. 29:96–107. 2024.PubMed/NCBI
|
|
59
|
Joshi S, Dharmalingam M, Vadavi A,
Thajudeen M, Keshavamurthy A, Bhonsley A and Shamanna P: Abstract
P278: 1-year outcomes of A1c reduction, weight loss, and lowered
QRISK3 scores in type 2 diabetes remission: Insights from an RCCT
leveraging whole-body digital twin technology. Circulation. 149
(Suppl 1)(P278)2024.
|
|
60
|
Hwang T, Kwon O, Lim B, Jin Z, Yang S, Kim
D, Park J, Yu H, Kim T, Uhm J, et al: Clinical application of
virtual antiarrhythmic drug test using digital twins in patients
who recurred atrial fibrillation after catheter ablation. EP
Europace. 25(euad122.076)2023.
|
|
61
|
Kadry K, Gupta S, Nezami FR and Edelman
ER: Probing the limits and capabilities of diffusion models for the
anatomic editing of digital twins. NPJ Digit Med.
7(354)2024.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Winter PD and Chico TJA: Using the
non-adoption, abandonment, scale-up, spread, and sustainability
(NASSS) framework to identify barriers and facilitators for the
implementation of digital twins in cardiovascular medicine. Sensors
(Basel). 23(6333)2023.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Lareyre F, Adam C, Carrier M and Raffort
J: Using digital twins for precision medicine in vascular surgery.
Ann Vasc Surg. 67:e577–e578. 2020.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Erol T, Mendi AF and Doğan D: The digital
twin revolution in healthcare, 2020 4th International Symposium on
Multidisciplinary Studies and Innovative Technologies (ISMSIT);
Istanbul, Turkey. IEEE, pp1-7, 2020.
|
|
65
|
Shu H, Liang R, Li Z, Goodridge A, Zhang
X, Ding H, Nagururu N, Sahu M, Creighton FX, Taylor RH, et al:
Twin-S: A digital twin for skull base surgery. Int J Comput Assist
Radiol Surg. 18:1077–1084. 2023.PubMed/NCBI View Article : Google Scholar
|
|
66
|
An Q, Rahman S, Zhou J and Kang JJ: A
comprehensive review on machine learning in healthcare industry:
classification, restrictions, opportunities and challenges. Sensors
(Basel). 23(4178)2023.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Rathore MM, Shah SA, Shukla D, Bentafat E
and Bakiras S: The role of AI, machine learning, and big data in
digital twinning: A systematic literature review, challenges, and
opportunities. IEEE Access. 9:32030–32052. 2021.
|
|
68
|
Bezborodova OE, Bodin ON, Gerasimov AI,
Kramm MN, Rahmatullov RF and Ubiennykh AG: ‘Digital Twin’
technology in medical information systems. J Phys Conf Ser.
1515(052022)2020.
|
|
69
|
Vinuesa R and Brunton SL: Enhancing
computational fluid dynamics with machine learning. Nat Comput Sci.
2:358–366. 2022.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Cuocolo R, Caruso M, Perillo T, Ugga L and
Petretta M: Machine learning in oncology: A clinical appraisal.
Cancer Lett. 481:55–62. 2020.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Krittanawong C, Virk HUH, Bangalore S,
Wang Z, Johnson KW, Pinotti R, Zhang H, Kaplin S, Narasimhan B,
Kitai T, et al: Machine learning prediction in cardiovascular
diseases: A meta-analysis. Sci Rep. 10(16057)2020.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Dalal S, Goel P, Onyema E, Alharbi A,
Mahmoud A, Algarni M and Awal H: Application of machine learning
for cardiovascular disease risk prediction. Comput Intell Neurosci.
2023(9418666)2023.
|
|
73
|
Yarasuri VK, Reddy DS, Muneesh PS, Kaushik
RVS, Vardhan TN and Nisha KL: Developing machine learning models
for cardiovascular disease prediction. 2022 2nd Asian Conference on
Innovation in Technology (ASIANCON). IEEE, pp1-6, 2022.
|
|
74
|
Brites ISG, da Silva LM, Barbosa JLV, Rigo
SJ, Correia SD and Leithardt VRQ: Machine learning and IoT applied
to cardiovascular diseases identification through heart sounds: A
literature review. Informatics. 8(73)2021.
|
|
75
|
Zhou J, You D, Bai J, Chen X, Wu Y, Wang
Z, Tang Y, Zhao Y and Feng G: Machine learning methods in
real-world studies of cardiovascular disease. Cardiovasc Innov
Appl. 7(25)2023.
|
|
76
|
Bzdok D, Krzywinski M and Altman N:
Machine learning: Supervised methods. Nat Methods. 15:5–6.
2018.
|
|
77
|
Baessler B, Mannil M, Oebel S, Maintz D,
Alkadhi H and Manka R: Subacute and chronic left ventricular
myocardial scar: Accuracy of texture analysis on nonenhanced cine
MR images. Radiology. 286:103–112. 2018.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Ali MM, Paul BK, Ahmed K, Bui FM, Quinn
JMW and Moni MA: Heart disease prediction using supervised machine
learning algorithms: Performance analysis and comparison. Comput
Biol Med. 136(104672)2021.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Naeem S, Ali A, Anam S and Ahmed MM: An
unsupervised machine learning algorithm: Comprehensive review. Int
J Com Dig Sys. 13:911–921. 2023.
|
|
80
|
Gosling RC, Morris PD, Silva Soto DA,
Lawford PV, Hose DR and Gunn JP: Virtual coronary intervention: A
treatment planning tool based upon the angiogram. JACC Cardiovasc
Imaging. 12:865–872. 2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Usmani UA, Happonen A and Watada J: A
review of unsupervised machine learning frameworks for anomaly
detection in industrial applications. In: Arai K (eds) Intelligent
Computing. SAI 2022. Lecture Notes in Networks and Systems. Vol.
507. Springer, Cham, pp158-189, 2022.
|
|
82
|
Cholevas C, Angeli E, Sereti Z, Mavrikos E
and Tsekouras GE: Anomaly Detection in Blockchain Networks Using
Unsupervised Learning: A survey. Algorithms. 17(201)2024.
|
|
83
|
Thill M, Konen W, Wang H and Bäck T:
Temporal convolutional autoencoder for unsupervised anomaly
detection in time series. Appl Soft Comput. 112(107751)2021.
|
|
84
|
Nanehkaran YA, Licai Z, Chen J, Jamel AAM,
Shengnan Z, Navaei YD and Aghbolagh MA: Anomaly detection in heart
disease using a density-based unsupervised approach. Wirel Commun
Mob Comput. 2022(6913043)2022.
|
|
85
|
Nakao T, Hanaoka S, Nomura Y, Murata M,
Takenaga T, Miki S, Watadani T, Yoshikawa T, Hayashi N and Abe O:
Unsupervised deep anomaly detection in chest radiographs. J Digit
Imaging. 34:418–427. 2021.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Flores AM, Schuler A, Eberhard AV, Olin
JW, Cooke JP, Leeper NJ, Shah NH and Ross EG: Unsupervised learning
for automated detection of coronary artery disease subgroups. J Am
Heart Assoc. 10(e021976)2021.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Manakitsa N, Maraslidis GS, Moysis L and
Fragulis GF: A review of machine learning and deep learning for
object detection, semantic segmentation, and human action
recognition in machine and robotic vision. Technologies.
12(15)2024.
|
|
88
|
Fan J, Ma C and Zhong Y: A selective
overview of deep learning. Stat Sci. 36:264–290. 2021.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Shrestha A and Mahmood A: Review of deep
learning algorithms and architectures. IEEE Access. 7:53040–53065.
2019.
|
|
90
|
Ravi D, Wong C, Deligianni F, Berthelot M,
Andreu-Perez J, Lo B and Yang GZ: Deep learning for health
informatics. IEEE J Biomed Health Inform. 21:4–21. 2017.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Esteva A, Chou K, Yeung S, Naik N, Madani
A, Mottaghi A, Liu Y, Topol E, Dean J and Socher R: Deep
learning-enabled medical computer vision. NPJ Digit Med.
4(5)2021.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Chen C, Qin C, Qiu H, Tarroni G, Duan J,
Bai W and Rueckert D: Deep learning for cardiac image segmentation:
A review. Front Cardiovasc Med. 7(25)2020.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Subramani S, Varshney N, Anand MV,
Soudagar MEM, Al-Keridis LA, Upadhyay TK, Alshammari N, Saeed M,
Subramanian K, Anbarasu K and Rohini K: Cardiovascular diseases
prediction by machine learning incorporation with deep learning.
Front Med (Lausanne). 10(1150933)2023.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Xia B, Innab N, Kandasamy V, Ahmadian A
and Ferrara M: Intelligent cardiovascular disease diagnosis using
deep learning enhanced neural network with ant colony optimization.
Sci Rep. 14(21777)2024.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Shahul Hameed MA, Qureshi AM and Kaushik
A: Bias mitigation via synthetic data generation: A review.
Electronics. 13(3909)2024.
|
|
96
|
Liu T, Tian Y, Zhao S, Huang X and Wang Q:
Residual convolutional neural network for cardiac image
segmentation and heart disease diagnosis. IEEE Access.
8:82153–8216. 2020.
|
|
97
|
Hu H, Fang B, Ran Y, Wei X, Xian W, Zhou M
and Kwong S: Deep dual-stream convolutional neural networks for
cardiac image semantic segmentation. IEEE Trans Industr Inform.
20:7440–7448. 2024.
|
|
98
|
Bai W, Sinclair M, Tarroni G, Oktay O,
Rajchl M, Vaillant G, Lee AM, Aung N, Lukaschuk E, Sanghvi MM, et
al: Automated cardiovascular magnetic resonance image analysis with
fully convolutional networks. J Cardiovasc Magn Reson.
20(65)2018.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Romaguera LV, Romero FP, Costa Filho CFF
and Costa MGF: Myocardial segmentation in cardiac magnetic
resonance images using fully convolutional neural networks. Biomed
Signal Process Control. 44:48–57. 2018.
|
|
100
|
Liu D, Jia Z, Jin M, Liu Q, Liao Z, Zhong
J, Ye H and Chen G: Cardiac magnetic resonance image segmentation
based on convolutional neural network. Comput Methods Programs
Biomed. 197(105755)2020.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Zotti C, Luo Z, Lalande A and Jodoin P:
Convolutional neural network with shape prior applied to cardiac
MRI segmentation. IEEE J Biomed Health Inform. 23:1119–1128.
2019.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Mienye ID, Swart TG and Obaido G:
Recurrent neural networks: A comprehensive review of architectures,
variants, and applications. Information. 15(517)2024.
|
|
103
|
Baruah RD and Organero MM: Explicit
context integrated recurrent neural network for applications in
smart environments. Expert Syst Appl. 255(124752)2024.
|
|
104
|
Choi E, Schuetz A, Stewart WF and Sun J:
Using recurrent neural network models for early detection of heart
failure onset. J Am Med Inform Assoc. 24:361–370. 2017.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Lu XH, Liu A, Fuh SC, Lian Y, Guo L, Yang
Y, Marelli A and Li Y: Recurrent disease progression networks for
modelling risk trajectory of heart failure. PLoS One.
16(e0245177)2021.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Rasmy L, Wu Y, Wang N, Geng X, Zheng WJ,
Wang F, Wu H, Xu H and Zhi D: A study of generalizability of
recurrent neural network-based predictive models for heart failure
onset risk using a large and heterogeneous EHR data set. J Biomed
Inform. 84:11–16. 2018.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Shahi S, Marcotte CD, Herndon CJ, Fenton
FH, Shiferaw Y and Cherry EM: Long-time prediction of arrhythmic
cardiac action potentials using recurrent neural networks and
reservoir computing. Front Physiol. 12(734178)2021.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Lynn HM, Pan SB and Kim P: A deep
bidirectional GRU network model for biometric electrocardiogram
classification based on recurrent neural networks. IEEE Access.
7:145395–145405. 2019.
|
|
109
|
Jovanovic L, Zivkovic M, Bacanin N,
Bozovic A, Bisevac P and Antonijevic M: Metaheuristic optimized
electrocardiography time-series anomaly classification with
recurrent and long-short term neural networks. Int J Hybrid Intell
Syst. 20:275–300. 2024.
|
|
110
|
Łukaniszyn M, Majka Ł, Grochowicz B,
Mikołajewski D and Kawala-Sterniuk A: Digital twins generated by
artificial intelligence in personalized healthcare. Appl Sci.
14(9404)2024.
|
|
111
|
Vallée A: Challenges and directions for
digital twin implementation in otorhinolaryngology. Eur Arch
Otorhinolaryngol. 281:6155–6159. 2024.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Vidovszky AA, Fisher CK, Loukianov AD,
Smith AM, Tramel EW, Walsh JR and Ross JL: Increasing acceptance of
AI-generated digital twins through clinical trial applications.
Clin Transl Sci. 17(e13897)2024.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Meijer C, Uh HW and El Bouhaddani S:
Digital twins in healthcare: Methodological challenges and
opportunities. J Pers Med. 13(1522)2023.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Weerarathna IN, Kumar P, Verma P, Raymond
D, Luharia A and Mishra G: Leveraging digital twin technology to
combat cardiovascular disease: A comprehensive review. In:
Proceedings of the 2024 2nd DMIHER International Conference on
Artificial Intelligence in Healthcare, Education and Industry
(IDICAIEI). IEEE, Wardha, pp1-6, 2024.
|