Open Access

Non‑pathogenic microflora of a spring water with regenerative properties

  • Authors:
    • Giovanni Nicoletti
    • Marta Corbella
    • Omar Jaber
    • Piero Marone
    • Daniele Scevola
    • Angela Faga
  • View Affiliations

  • Published online on: August 24, 2015     https://doi.org/10.3892/br.2015.507
  • Pages: 758-762
  • Copyright: © Nicoletti et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The Comano spring water (Comano, Italy) has been demonstrated to improve skin regeneration, not only by increasing keratinocyte proliferation and migration, but also by modulating the regenerated collagen and elastic fibers in the dermis. However, such biological properties may not be entirely explained by its mineral composition only. As the non‑pathogenic bacterial populations have demonstrated an active role in different biological processes, the potential presence of non‑pathogenic bacterial species within the Comano spring water was investigated in order to identify any possible correlation between these bacterial populations and the demonstrated biological properties of this water. The water was collected at the spring using an aseptic procedure and multiple cultures were carried out. A total of 9 different strains were isolated, which were Aeromonas hydrophila, Brevundimonas vesicularis, Chromobacterium violaceum, Citrobacter youngae, Empedobacter brevis, Pantoea agglomerans, Pseudomonas putida, Pseudomonas stutzeri and Streptococcus mitis. All the isolated bacterial strains, although showing a rare potential virulence, demonstrated peculiar and favorable metabolic attitudes in controlling environmental pollution. The therapeutical effects of certain spring waters are currently being proven as correlated not only to their peculiar mineral composition, but also to the complex activity of their resident non‑pathogenic bacterial populations. Although the present study provided only preliminary data, some of the non‑pathogenic bacterial populations that were identified in the Comano spring water are likely to produce molecular mediators with a role in the wound healing process that, thus far, remain unknown. Numerous other unknown bacterial species, comprehensively termed DNA‑rich ‘dark matter’, are likely to contribute to the Comano water regenerative properties as well. Therefore, the non‑pathogenic bacterial populations of the Comano spring water are possibly credited for its demonstrated regenerative properties.

References

1 

Faga A, Nicoletti G, Gregotti C, Finotti V, Nitto A and Gioglio L: Effects of thermal water on skin regeneration. Int J Mol Med. 29:732–740. 2012.PubMed/NCBI

2 

International Organization for Standardization (ISO). Water quality-detection and enumeration of Legionella: Direct membrane filtration method for waters with low bacterial counts. ISO 11731–11732. 2004.simplehttp://www.legionellaonline.it/Accessed. May 26–2015

3 

Éditeur officiel du Québec. Regulation respecting bottled water: Food Products Act. simplehttp://www2.publicationsduquebec.gouv.qc.ca/dynamicSearch/telecharge.php?type=3&file=/P_29/P29R2_A.HTMAccessed. August 1–2015

4 

Horneman AJ and Ali A: Aeromonas. Manual of Clinical Microbiology. Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML and Warnock DW: (10th). ASM Press. (Washington, DC). 658–665. 2011.

5 

Kompanets EV, Isaeva NM and Balakhnin IA: Bacteria of the genus Aeromonas and their role in aquaculture. Mikrobiol Zh. 54:89–99. 1992.(In Russian). PubMed/NCBI

6 

El Amraoui B, El Amraoui M, Cohen N and Fassouane A: Antifungal and antibacterial activity of marine microorganisms. Ann Pharm Fr. 72:107–111. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Cheriaa J, Mosrati R, Ladhari N and Bakhrouf A: Acclimated biomass that degrades Sulfonated Naphthalene Formaldehyde Condensate. Pak J Biol Sci. 11:1588–1593. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Durán M, Faljoni-Alario A and Durán N: Chromobacterium violaceum and its important metabolites - review. Folia Microbiol (Praha). 55:535–547. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Hoshino T: Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: Biosynthetic mechanism and pathway for construction of violacein core. Appl Microbiol Biotechnol. 91:1463–1475. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Kimura K, Inoue T, Kato D, Negoro S, Ike M and Takeo M: Distribution of chitin/chitosan-like bioflocculant-producing potential in the genus Citrobacter. Appl Microbiol Biotechnol. 97:9569–9577. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Kocharova NA, Mieszała M, Zatonsky GV, Staniszewska M, Shashkov AS, Gamian A and Knirel YA: Structure of the O-polysaccharide of Citrobacter youngae O1 containing an alpha-D-ribofuranosyl group. Carbohydr Res. 339:321–325. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Yokozeki K and Hara S: A novel and efficient enzymatic method for the production of peptides from unprotected starting materials. J Biotechnol. 115:211–220. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Stockwell VO, Johnson KB, Sugar D and Loper JE: Antibiosis Contributes to Biological Control of Fire Blight by Pantoea agglomerans Strain Eh252 in Orchards. Phytopathology. 92:1202–1209. 2002. View Article : Google Scholar : PubMed/NCBI

14 

Rezzonico F, Smits TH, Montesinos E, Frey JE and Duffy B: Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol. 9:2042009. View Article : Google Scholar : PubMed/NCBI

15 

Zuo Z, Gong T, Che Y, Liu R, Xu P, Jiang H, Qiao C, Song C and Yang C: Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil. Biodegradation. 26:223–233. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Espinosa Urgel, Salido A and Ramos JL: Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol. 182:2363–2369. 2000. View Article : Google Scholar : PubMed/NCBI

17 

Li C, Yang J, Wang X, Wang E, Li B, He R and Yuan H: Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24. Bioresour Technol. 182:18–25. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Shi YH, Ren L, Jia Y and Yan YC: Genome Sequence of Organophosphorus Pesticide-Degrading Bacterium Pseudomonas stutzeri Strain YC-YH1. Genome Announc. 3:e00192–15. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Daifalla N, Cayabyab MJ, Xie E, Kim HB, Tzipori S, Stashenko P, Duncan M and Campos-Neto A: Commensal Streptococcus mitis is a unique vector for oral mucosal vaccination. Microbes Infect. 17:237–242. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Guarner F, Bourdet-Sicard R, Brandtzaeg P, Gill HS, McGuirk P, van Eden W, Versalovic J, Weinstock JV and Rook GA: Mechanisms of disease: The hygiene hypothesis revisited. Nat Clin Pract Gastroenterol Hepatol. 3:275–284. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D, Daigneault MC, Brown EM, Schroeter K and Allen-Vercoe E: Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome. 1:32013. View Article : Google Scholar : PubMed/NCBI

22 

Bested AC, Logan AC and Selhub EM: Intestinal microbiota, probiotics and mental health: From Metchnikoff to modern advances: Part III - convergence toward clinical trials. Gut Pathog. 5:42013. View Article : Google Scholar : PubMed/NCBI

23 

Selhub EM, Logan AC and Bested AC: Fermented foods, microbiota, and mental health: Ancient practice meets nutritional psychiatry. J Physiol Anthropol. 33:22014. View Article : Google Scholar : PubMed/NCBI

24 

Grice EA and Segre JA: The skin microbiome. Nat Rev Microbiol. 9:244–253. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Huttenhower C, Gevers D, Knight R, et al: Human Microbiome Project Consortium: Structure, function and diversity of the healthy human microbiome. Nature. 486:207–214. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Nakatsuji T, Chiang HI, Jiang SB, Nagarajan H, Zengler K and Gallo RL: The microbiome extends to subepidermal compartments of normal skin. Nat Commun. 4:14312013. View Article : Google Scholar : PubMed/NCBI

27 

Krutmann J: Pre- and probiotics for human skin. Clin Plast Surg. 39:59–64. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Al-Ghazzewi FH and Tester RF: Impact of prebiotics and probiotics on skin health. Benef Microbes. 5:99–107. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Bockmühl D, Jassoy C, Nieveler S, Scholtyssek R, Wadle A and Waldmann-Laue M: Prebiotic Cosmetics: An Alternative to Antibacterial Products. Int J Cosmet Sci. 29:63–64. 2007. View Article : Google Scholar

30 

Gallo RL, Murakami M, Ohtake T and Zaiou M: Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy Clin Immunol. 110:823–831. 2002. View Article : Google Scholar : PubMed/NCBI

31 

de Jongh GJ, Zeeuwen PL, Kucharekova M, Pfundt R, van der Valk PG, Blokx W, Dogan A, Hiemstra PS, van de Kerkhof PC and Schalkwijk J: High expression levels of keratinocyte antimicrobial proteins in psoriasis compared with atopic dermatitis. J Invest Dermatol. 125:1163–1173. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Faga A, Pelfini C, Concia E and Bona F: Variazioni della naturale attività antibatterica della cute: Un metodo di valutazione di detergenti e/o antisettici. Chron Derm. 2:233–241. 1981.(In Italian).

33 

Nocera T, Fabre P, Rossi AB and Mengeaud V: Clinical development program of a new dermocosmetic range of products containing I-modulia (Aquaphilus dolomiae extract) in atopic dermatitis. J Am Acad Dermatol. 70:(suppl 1). AB62014.

34 

Patrizi A, Bacquey A, Fabre P, Schmitt AM, Decoster CJ, Phulpin C, Theunis J and Mengeaud V: Clinical and biometrologic evaluation of a novel emollient balm containing an Aquaphilus dolomiae extract in 1- to 4-year-old children suffering from atopic dermatitis: International, multicenter, randomized versus control group study. J Am Acad Dermatol. 70:(suppl 1). AB622014. View Article : Google Scholar

35 

Aries MF, Fabre P, Vaissière C, Delga H, Leveque M, Castex-Rizzi N, Bessou-Touya S and Nguyen T: Antiinflammatory and immunomodulatory effect of I-modulia, an Aquaphilus dolomiae extract, on atopic dermatitis in vitro. J Am Acad Dermatol. 70:(suppl 1). AB612014. View Article : Google Scholar

36 

Aries MF, Fabre P, Duplan H, Hernandez Pigeon H, Galliano MF, Castex-Rizzi N, Bessou-Touya S and Nguyen T: I-modulia, an Aquaphilus dolomiae extract, stimulates innate immune response through Toll-like receptor activation. J Am Acad Dermatol. 70:(suppl 1). AB632014. View Article : Google Scholar

37 

Mahe YF, Perez MJ, Tacheau C, Fanchon C, Martin R, Rousset F and Seite S: A new Vitreoscilla filiformis extract grown on spa water-enriched medium activates endogenous cutaneous antioxidant and antimicrobial defenses through a potential Toll-like receptor 2/protein kinase C, zeta transduction pathway. Clin Cosmet Investig Dermatol. 6:191–196. 2013.PubMed/NCBI

38 

Gueniche A, Knaudt B, Schuck E, Volz T, Bastien P, Martin R, Röcken M, Breton L and Biedermann T: Effects of nonpathogenic gram-negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: A prospective, randomized, double-blind, placebo-controlled clinical study. Br J Dermatol. 159:1357–1363. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Volz T, Skabytska Y, Guenova E, Chen KM, Frick JS, Kirschning CJ, Kaesler S, Röcken M and Biedermann T: Nonpathogenic bacteria alleviating atopic dermatitis inflammation induce IL-10-producing dendritic cells and regulatory Tr1 cells. J Invest Dermatol. 134:96–104. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Nakatsuji T and Gallo RL: Dermatological therapy by topical application of non-pathogenic bacteria. J Invest Dermatol. 134:11–14. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Agger WA, McCormick JD and Gurwith MJ: Clinical and microbiological features of Aeromonas hydrophila-associated diarrhea. J Clin Microbiol. 21:909–913. 1985.PubMed/NCBI

42 

Minnaganti VR, Patel PJ, Iancu D, Schoch PE and Cunha BA: Necrotizing fasciitis caused by Aeromonas hydrophila. Heart Lung. 29:306–308. 2000. View Article : Google Scholar : PubMed/NCBI

43 

Sneath PH, Whelan JP, Bhagwan Singh R and Edwards D: Fatal infection by Chromobacterium violaceum. Lancet. 265:276–277. 1953. View Article : Google Scholar : PubMed/NCBI

44 

Janknecht P, Schneider CM and Ness T: Outbreak of Empedobacter brevis endophthalmitis after cataract extraction. Graefes Arch Clin Exp Ophthalmol. 240:291–295. 2002. View Article : Google Scholar : PubMed/NCBI

45 

Jain S, Bohra I, Mahajan R, Jain S and Chugh TD: Pantoea agglomerans infection behaving like a tumor after plant thorn injury: An unusual presentation. Indian J Pathol Microbiol. 55:386–388. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Shih CC, Chen YC, Chang SC, Luh KT and Hsieh WC: Bacteremia due to Citrobacter species: Significance of primary intraabdominal infection. Clin Infect Dis. 23:543–549. 1996. View Article : Google Scholar : PubMed/NCBI

47 

Shang ST, Chiu SK, Chan MC, Wang NC, Yang YS, Lin JC and Chang FY: Invasive Brevundimonas vesicularis bacteremia: Two case reports and review of the literature. J Microbiol Immunol Infect. 45:468–472. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Von Graevenitz A and Weinstein J: Pathogenic significance of Pseudomonas fluorescensPseudomonas putida. Yale J Biol Med. 44:265–273. 1971.PubMed/NCBI

49 

Noble RC and Overman SB: Pseudomonas stutzeri infection. A review of hospital isolates and a review of the literature. Diagn Microbiol Infect Dis. 19:51–56. 1994. View Article : Google Scholar : PubMed/NCBI

50 

Mitchell J: Streptococcus mitis: Walking the line between commensalism and pathogenesis. Mol Oral Microbiol. 26:89–98. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

November 2015
Volume 3 Issue 6

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Nicoletti, G., Corbella, M., Jaber, O., Marone, P., Scevola, D., & Faga, A. (2015). Non‑pathogenic microflora of a spring water with regenerative properties. Biomedical Reports, 3, 758-762. https://doi.org/10.3892/br.2015.507
MLA
Nicoletti, G., Corbella, M., Jaber, O., Marone, P., Scevola, D., Faga, A."Non‑pathogenic microflora of a spring water with regenerative properties". Biomedical Reports 3.6 (2015): 758-762.
Chicago
Nicoletti, G., Corbella, M., Jaber, O., Marone, P., Scevola, D., Faga, A."Non‑pathogenic microflora of a spring water with regenerative properties". Biomedical Reports 3, no. 6 (2015): 758-762. https://doi.org/10.3892/br.2015.507