|
1
|
World Health Organization, . Genomic
Resource Centre: Genes and human disease. http://www.who.int/genomics/public/geneticdiseases/en/index1.htmlSeptember
4–2017
|
|
2
|
Hultén MA, Patel S, Jonasson J and
Iwarsson E: On the origin of the maternal age effect in trisomy 21
Down syndrome: The Oocyte Mosaicism Selection model. Reproduction.
139:1–9. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Speicher MR: ChromosomesVogel and
Motulsky's Human Genetics Problems and Approaches. Speicher MR,
Antonarakis SE and Motulsky AG: Springer-Verlag; Berlin,
Heidelberg: pp. 55–138. 2010, View Article : Google Scholar
|
|
4
|
Lejeune J, Gauthier M and Turpin R: Human
chromosomes in tissue cultures. C R Hebd Seances Acad Sci.
248:602–603. 1959.(In French). PubMed/NCBI
|
|
5
|
Mutton D, Alberman E and Hook EB: National
Down Syndrome Cytogenetic Register and the Association of Clinical
Cytogeneticists: Cytogenetic and epidemiological findings in Down
syndrome, England and Wales 1989 to 1993. J Med Genet. 33:387–394.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Raoul O, Carpentier S, Dutrillaux B,
Mallet R and Lejeune J: Partial trisomy of chromosome 21 by
maternal translocation t(15;21) (q26.2; q21). Ann Genet.
19:187–190. 1976.(In French). PubMed/NCBI
|
|
7
|
Rahmani Z, Blouin JL, Créau-Goldberg N,
Watkins PC, Mattei JF, Poissonnier M, Prieur M, Chettouh Z, Nicole
A, Aurias A, et al: Down syndrome critical region around D21S55 on
proximal 21q22.3. Am J Med Genet Suppl. 7:98–103. 1990.PubMed/NCBI
|
|
8
|
Korenberg JR, Chen XN, Schipper R, Sun Z,
Gonsky R, Gerwehr S, Carpenter N, Daumer C, Dignan P and Disteche
C: Down syndrome phenotypes: The consequences of chromosomal
imbalance. Proc Natl Acad Sci USA. 91:pp. 4997–5001. 1994;
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Do C, Xing Z, Yu YE and Tycko B:
Trans-acting epigenetic effects of chromosomal aneuploidies:
Lessons from Down syndrome and mouse models. Epigenomics.
9:189–207. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kim VN: MicroRNA biogenesis: Coordinated
cropping and dicing. Nat Rev Mol Cell Biol. 6:376–385. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Brás A, Monteiro C and Rueff J: Oxidative
stress in trisomy 21. A possible role in cataractogenesis.
Ophthalmic Paediatr Genet. 10:271–277. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Campos C, Guzmán R, López-Fernández E and
Casado A: Urinary uric acid and antioxidant capacity in children
and adults with Down syndrome. Clin Biochem. 43:228–233. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Clinical Cytogenetics: Disorders of the
autosomes and the sex chromosomesThompson & Thompson Genetics
in Medicine. Nussbaum RL, McInnes RR and Willard HF: Saunders
Elsevier; pp. 89–113. 2007, View Article : Google Scholar
|
|
15
|
Ram G and Chinen J: Infections and
immunodeficiency in Down syndrome. Clin Exp Immunol. 164:9–16.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Freeman SB, Bean LH, Allen EG, Tinker SW,
Locke AE, Druschel C, Hobbs CA, Romitti PA, Royle MH, Torfs CP, et
al: Ethnicity, sex, and the incidence of congenital heart defects:
A report from the National Down Syndrome Project. Genet Med.
10:173–180. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fong CT and Brodeur GM: Down's syndrome
and leukemia: Epidemiology, genetics, cytogenetics and mechanisms
of leukemogenesis. Cancer Genet Cytogenet. 28:55–76. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Creutzig U, Ritter J, Vormoor J, Ludwig
WD, Niemeyer C, Reinisch I, Stollmann-Gibbels B, Zimmermann M and
Harbott J: Myelodysplasia and acute myelogenous leukemia in Down's
syndrome. A report of 40 children of the AML-BFM study group.
Leukemia. 10:1677–1686. 1996.PubMed/NCBI
|
|
19
|
Hitzler JK and Zipursky A: Origins of
leukaemia in children with Down syndrome. Nat Rev Cancer. 5:11–20.
2005. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Satgé D, Sommelet D, Geneix A, Nishi M,
Malet P and Vekemans M: A tumor profile in Down syndrome. Am J Med
Genet. 78:207–216. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sussan TE, Yang A, Li F, Ostrowski MC and
Reeves RH: Trisomy represses Apc(Min)-mediated tumours in mouse
models of Down's syndrome. Nature. 451:73–75. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Baek KH, Zaslavsky A, Lynch RC, Britt C,
Okada Y, Siarey RJ, Lensch MW, Park IH, Yoon SS, Minami T, et al:
Down's syndrome suppression of tumour growth and the role of the
calcineurin inhibitor DSCR1. Nature. 459:1126–1130. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hartley D, Blumenthal T, Carrillo M,
DiPaolo G, Esralew L, Gardiner K, Granholm AC, Iqbal K, Krams M,
Lemere C, et al: Down syndrome and Alzheimer's disease: Common
pathways, common goals. Alzheimers Dement. 11:700–709. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Prasher VP, Farrer MJ, Kessling AM, Fisher
EM, West RJ, Barber PC and Butler AC: Molecular mapping of
Alzheimer-type dementia in Down's syndrome. Ann Neurol. 43:380–383.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Murdoch JC, Rodger JC, Rao SS, Fletcher CD
and Dunnigan MG: Down's syndrome: An atheroma-free model? BMJ.
2:226–228. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ylä-Herttuala S, Luoma J, Nikkari T and
Kivimäki T: Down's syndrome and atherosclerosis. Atherosclerosis.
76:269–272. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Vianello E, Dogliotti G, Dozio E and Corsi
Romanelli MM: Low heart-type fatty acid binding protein level
during aging may protect down syndrome people against
atherosclerosis. Immun Ageing. 10:22013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Buchin PJ, Levy JS and Schullinger JN:
Down's syndrome and the gastrointestinal tract. J Clin
Gastroenterol. 8:111–114. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Purdy IB, Singh N, Brown WL, Vangala S and
Devaskar UP: Revisiting early hypothyroidism screening in infants
with Down syndrome. J Perinatol. 34:936–940. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek
SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II.
EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lee Y, Jeon K, Lee JT, Kim S and Kim VN:
MicroRNA maturation: Stepwise processing and subcellular
localization. EMBO J. 21:4663–4670. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J,
Lee J, Provost P, Rådmark O, Kim S, et al: The nuclear RNase III
Drosha initiates microRNA processing. Nature. 425:415–419. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gregory RI, Yan KP, Amuthan G, Chendrimada
T, Doratotaj B, Cooch N and Shiekhattar R: The Microprocessor
complex mediates the genesis of microRNAs. Nature. 432:235–240.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lund E, Güttinger S, Calado A, Dahlberg JE
and Kutay U: Nuclear export of microRNA precursors. Science.
303:95–98. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bernstein E, Caudy AA, Hammond SM and
Hannon GJ: Role for a bidentate ribonuclease in the initiation step
of RNA interference. Nature. 409:363–366. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schwarz DS, Hutvágner G, Du T, Xu Z,
Aronin N and Zamore PD: Asymmetry in the assembly of the RNAi
enzyme complex. Cell. 115:199–208. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hu W and Coller J: What comes first:
Translational repression or mRNA degradation? The deepening mystery
of microRNA function. Cell Res. 22:1322–1324. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Saito T and Saetrom P: MicroRNAs-targeting
and target prediction. N Biotechnol. 27:243–249. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Min A, Zhu C, Peng S, Rajthala S, Costea
DE and Sapkota D: MicroRNAs as important players and biomarkers in
oral carcinogenesis. BioMed Res Int. 2015:1869042015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Xu Y, Li W, Liu X, Chen H, Tan K, Chen Y,
Tu Z and Dai Y: Identification of dysregulated microRNAs in
lymphocytes from children with Down syndrome. Gene. 530:278–286.
2013a. View Article : Google Scholar
|
|
41
|
Siew WH, Tan KL, Babaei MA, Cheah PS and
Ling KH: MicroRNAs and intellectual disability (ID) in Down
syndrome, X-linked ID, and Fragile X syndrome. Front Cell Neurosci.
7:412013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Alexandrov PN, Percy ME and Lukiw WJ:
Chromosome 21-Encoded microRNAs (mRNAs): Impact on Down's syndrome
and trisomy-21 linked disease. Cell Mol Neurobiol. July
7–2017.(Epub ahead of print). doi.org/10.1007/s10571-017-0514-0.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Elton TS, Sansom SE and Martin MM:
Trisomy-21 gene dosage over-expression of miRNAs results in the
haploinsufficiency of specific target proteins. RNA Biol.
7:540–547. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Elton TS, Selemon H, Elton SM and
Parinandi NL: Regulation of the MIR155 host gene in physiological
and pathological processes. Gene. 532:1–12. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li YY, Alexandrov PN, Pogue AI, Zhao Y,
Bhattacharjee S and Lukiw WJ: miRNA-155 upregulation and complement
factor H deficits in Down's syndrome. Neuroreport. 23:168–173.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Griffiths MR, Neal JW, Fontaine M, Das T
and Gasque P: Complement factor H, a marker of self protects
against experimental autoimmune encephalomyelitis. J Immunol.
182:4368–4377. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lu HE, Yang YC, Chen SM, Su HL, Huang PC,
Tsai MS, Wang TH, Tseng CP and Hwang SM: Modeling neurogenesis
impairment in Down syndrome with induced pluripotent stem cells
from Trisomy 21 amniotic fluid cells. Exp Cell Res. 319:498–505.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chao HT, Zoghbi HY and Rosenmund C: MeCP2
controls excitatory synaptic strength by regulating glutamatergic
synapse number. Neuron. 56:58–65. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Keck-Wherley J, Grover D, Bhattacharyya S,
Xu X, Holman D, Lombardini ED, Verma R, Biswas R and Galdzicki Z:
Abnormal microRNA expression in Ts65Dn hippocampus and whole blood:
Contributions to Down syndrome phenotypes. Dev Neurosci.
33:451–467. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Billet S, Aguilar F, Baudry C and Clauser
E: Role of angiotensin II AT1 receptor activation in cardiovascular
diseases. Kidney Int. 74:1379–1384. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Coppola A, Romito A, Borel C, Gehrig C,
Gagnebin M, Falconnet E, Izzo A, Altucci L, Banfi S, Antonarakis
SE, et al: Cardiomyogenesis is controlled by the miR-99a/let-7c
cluster and epigenetic modifications. Stem Cell Res (Amst).
12:323–337. 2014. View Article : Google Scholar
|
|
52
|
Klusmann JH, Li Z, Böhmer K, Maroz A, Koch
ML, Emmrich S, Godinho FJ, Orkin SH and Reinhardt D: miR-125b-2 is
a potential oncomiR on human chromosome 21 in megakaryoblastic
leukemia. Genes Dev. 24:478–490. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhang H, Luo XQ, Zhang P, Huang LB, Zheng
YS, Wu J, Zhou H, Qu LH, Xu L and Chen YQ: MicroRNA patterns
associated with clinical prognostic parameters and CNS relapse
prediction in pediatric acute leukemia. PLoS One. 4:e78262009.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
O'Connell RM, Rao DS, Chaudhuri AA, Boldin
MP, Taganov KD, Nicoll J, Paquette RL and Baltimore D: Sustained
expression of microRNA-155 in hematopoietic stem cells causes a
myeloproliferative disorder. J Exp Med. 205:585–594. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wechsler J, Greene M, McDevitt MA,
Anastasi J, Karp JE, Le Beau MM and Crispino JD: Acquired mutations
in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat
Genet. 32:148–152. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
56
|
Shaham L, Vendramini E, Ge Y, Goren Y,
Birger Y, Tijssen MR, McNulty M, Geron I, Schwartzman O, Goldberg
L, et al: MicroRNA-486-5p is an erythroid oncomiR of the myeloid
leukemias of Down syndrome. Blood. 125:1292–1301. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Scott GK, Goga A, Bhaumik D, Berger CE,
Sullivan CS and Benz CC: Coordinate suppression of ERBB2 and ERBB3
by enforced expression of micro-RNA miR-125a or miR-125b. J Biol
Chem. 282:1479–1486. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong
C, Huang Y, Hu X, Su F, Lieberman J, et al: let-7 regulates self
renewal and tumorigenicity of breast cancer cells. Cell.
131:1109–1123. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sun X, Xu C, Tang SC, Wang J, Wang H, Wang
P, Du N, Qin S, Li G, Xu S, et al: Let-7c blocks estrogen-activated
Wnt signaling in induction of self-renewal of breast cancer stem
cells. Cancer Gene Ther. 23:83–89. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Johnson CD, Esquela-Kerscher A, Stefani G,
Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J,
Shingara J, et al: The let-7 microRNA represses cell proliferation
pathways in human cells. Cancer Res. 67:7713–7722. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang PY, Sun YX, Zhang S, Pang M, Zhang
HH, Gao SY, Zhang C, Lv CJ and Xie SY: Let-7c inhibits A549 cell
proliferation through oncogenic TRIB2 related factors. FEBS Lett.
587:2675–2681. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Patja K, Pukkala E, Sund R, Iivanainen M
and Kaski M: Cancer incidence of persons with Down syndrome in
Finland: A population-based study. Int J Cancer. 118:1769–1772.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sun D, Lee YS, Malhotra A, Kim HK, Matecic
M, Evans C, Jensen RV, Moskaluk CA and Dutta A: miR-99 family of
MicroRNAs suppresses the expression of prostate-specific antigen
and prostate cancer cell proliferation. Cancer Res. 71:1313–1324.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hasle H: Pattern of malignant disorders in
individuals with Down's syndrome. Lancet Oncol. 2:429–436. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xu Y, Li W, Liu X, Ma H, Tu Z and Dai Y:
Analysis of microRNA expression profile by small RNA sequencing in
Down syndrome fetuses. Int J Mol Med. 32:1115–1125. 2013b.
View Article : Google Scholar
|
|
66
|
Lim JH, Kim DJ, Lee DE, Han JY, Chung JH,
Ahn HK, Lee SW, Lim DH, Lee YS, Park SY, et al: Genome-wide
microRNA expression profiling in placentas of fetuses with Down
syndrome. Placenta. 36:322–328. 2015a. View Article : Google Scholar
|
|
67
|
Liang Y, Ridzon D, Wong L and Chen C:
Characterization of microRNA expression profiles in normal human
tissues. BMC Genomics. 8:1662007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Svobodová I, Korabečná M, Calda P, Břešťák
M, Pazourková E, Pospíšilová Š, Krkavcová M, Novotná M and Hořínek
A: Differentially expressed miRNAs in trisomy 21 placentas. Prenat
Diagn. 36:775–784. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lim JH, Lee DE, Kim SY, Kim HJ, Kim KS,
Han YJ, Kim MH, Choi JS, Kim MY, Ryu HM, et al: MicroRNAs as
potential biomarkers for noninvasive detection of fetal trisomy 21.
J Assist Reprod Genet. 32:827–837. 2015b. View Article : Google Scholar
|
|
70
|
Shi WL, Liu ZZ, Wang HD, Wu D, Zhang H,
Xiao H, Chu Y, Hou QF and Liao SX: Integrated miRNA and mRNA
expression profiling in fetal hippocampus with Down syndrome. J
Biomed Sci. 23:482016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wang L, Li Z, Song X, Liu L, Su G and Cui
Y: Bioinformatic analysis of genes and microRNAs associated with
atrioventricular septal defect in Down syndrome patients. Int Heart
J. 57:490–495. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lin H, Sui W, Li W, Tan Q, Chen J, Lin X,
Guo H, Ou M, Xue W, Zhang R, et al: Integrated microRNA and protein
expression analysis reveals novel microRNA regulation of targets in
fetal down syndrome. Mol Med Rep. 14:4109–4118. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Arena A, Iyer AM, Milenkovic I, Kovács GG,
Ferrer I, Perluigi M and Aronica E: Developmental expression and
dysregulation of miR-146a and miR-155 in Down's syndrome and mouse
models of Down's syndrome and Alzheimer's disease. Curr Alzheimer
Res. 14:July 6–2017.(Epub ahead of print).
doi.org/10.2174/1567205014666170706112701. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Nguyen LS, Lepleux M, Makhlouf M, Martin
C, Fregeac J, Siquier-Pernet K, Philippe A, Feron F, Gepner B,
Rougeulle C, et al: Profiling olfactory stem cells from living
patients identifies miRNAs relevant for autism pathophysiology. Mol
Autism. 7:12016. View Article : Google Scholar : PubMed/NCBI
|