Open Access

Bioinformatics analysis reveals different gene expression patterns in the annulus fibrosis and nucleus pulpous during intervertebral disc degeneration

  • Authors:
    • Yi Wang
    • Ling Jiang
    • Guogang Dai
    • Shengwu Li
    • Xiaoyuan Mu
  • View Affiliations

  • Published online on: October 19, 2018     https://doi.org/10.3892/etm.2018.6884
  • Pages: 5031-5040
  • Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Degeneration of the intervertebral disc (IVD), which consists of the annulus fibrosus (AF) and nucleus pulposus (NP), is a multifactorial physiological process associated with lower back pain. Despite decades of research, the knowledge of the underlying molecular mechanisms of IVD degeneration (IDD) has remained limited. The present study aimed to reveal the differential gene expression patterns in AF and NP during the process of IDD and to identify key biomarkers contributing to these differences. The microarray dataset GSE70362 containing 24 AF and 24 NP samples was retrieved from the Gene Expression Omnibus database. Of these, 8 healthy samples were discarded. GeneSpring11.5 software was employed to identify differentially expressed genes (DEGs). Metascape online tools were used to perform enrichment analyses. Finally, the DEGs were mapped with the Search Tool for the Retrieval of Interacting Genes, and a protein‑protein interaction (PPI) network was constructed in Cytoscape software. A total of 87 DEGs were identified. Gene ontology enrichment revealed that these DEGs were mainly involved in the inflammatory response, the extracellular matrix and RNA polymerase II transcription factor activity. Pathway enrichment revealed that the DEGs were mainly involved in the transforming growth factor (TGF‑β) and estrogen signaling pathways. Matrix metalloproteinase (MMP)1 and interleukin (IL)6 were included in the genes enriched in rheumatoid arthritis, whereas bone morphogenetic protein (BMP)2 and thrombospondin 1 (THBS1) were among the genes enriched in the TGF‑β signaling pathway. In the PPI network, IL6 was identified as the central gene. In conclusion, as MMP1 has been demonstrated degrade collagen III at higher rates compared with other types of collagen (which is at a higher quantity in AF than NP), collagen types may be in different distribution patterns, which may contribute to the upregulation of MMP1 in AF. Differences in the expression of BMP2, ESR1 and THBS1 may explain for the pathological differences between AF and NP. IL6 may have a key role in different degeneration processes in AF and NP.
View Figures
View References

Related Articles

Journal Cover

December-2018
Volume 16 Issue 6

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Wang Y, Jiang L, Dai G, Li S and Mu X: Bioinformatics analysis reveals different gene expression patterns in the annulus fibrosis and nucleus pulpous during intervertebral disc degeneration. Exp Ther Med 16: 5031-5040, 2018
APA
Wang, Y., Jiang, L., Dai, G., Li, S., & Mu, X. (2018). Bioinformatics analysis reveals different gene expression patterns in the annulus fibrosis and nucleus pulpous during intervertebral disc degeneration. Experimental and Therapeutic Medicine, 16, 5031-5040. https://doi.org/10.3892/etm.2018.6884
MLA
Wang, Y., Jiang, L., Dai, G., Li, S., Mu, X."Bioinformatics analysis reveals different gene expression patterns in the annulus fibrosis and nucleus pulpous during intervertebral disc degeneration". Experimental and Therapeutic Medicine 16.6 (2018): 5031-5040.
Chicago
Wang, Y., Jiang, L., Dai, G., Li, S., Mu, X."Bioinformatics analysis reveals different gene expression patterns in the annulus fibrosis and nucleus pulpous during intervertebral disc degeneration". Experimental and Therapeutic Medicine 16, no. 6 (2018): 5031-5040. https://doi.org/10.3892/etm.2018.6884