Suppression of allergic and inflammatory responses by essential oils derived from herbal plants and citrus fruits

  • Authors:
    • Mai Mitoshi
    • Isoko Kuriyama
    • Hiroto Nakayama
    • Hironari Miyazato
    • Keiichiro Sugimoto
    • Yuko Kobayashi
    • Tomoko Jippo
    • Kouji Kuramochi
    • Hiromi Yoshida
    • Yoshiyuki Mizushina
  • View Affiliations

  • Published online on: March 31, 2014     https://doi.org/10.3892/ijmm.2014.1720
  • Pages: 1643-1651
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The aim of the present study was to investigate the biological activity of 20 essential oils (EOs) derived from herbal plants and citrus fruits. The in vitro anti-allergic and anti-inflammatory activities of these oils were investigated, and the EO which was found to have the strongest activity of the 20 EOs examined, was investigated further to identify its components and bioactive compounds. The in vitro anti-allergic activity was determined by measuring the release of β-hexosaminidase from rat basophilic leukemia (RBL-2H3) cells treated with the calcium ionophore, A23187. The in vitro anti-inflammatory activity was determined by measuring the production of tumor necrosis factor-α (TNF-α) in RAW264.7 murine macrophages treated with lipopolysaccharide. Among the EOs examined, lemongrass [Cymbopogon citratus (DC.) Stapf] elicited the strongest anti-allergic and anti-inflammatory effects. A principal component of this EO is citral (3,7-dimethyl-2,6-octadien-1-al) (74.5%), a mixture of the stereoisomers, geranial (trans‑citral, 40.16%) and neral (cis-citral, 34.24%), as determined by chromatography-mass spectrometry analysis. The activities of citral and geranial are similar to those of lemongrass EO. These compounds elicited significant in vivo anti-allergic and anti-inflammatory effects, suppressing an immunoglobulin E (IgE)-induced passive cutaneous anaphylactic reaction in mice and a 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory mouse ear edema, respectively. Our data demonstrate that lemongrass EO and its constituents, citral and geranial, may be a therapeutic candidate for allergic and inflammatory diseases.

References

1 

Bakkali F, Averbeck S, Averbeck D and Idaomar M: Biological effects of essential oils-a review. Food Chem Toxicol. 46:446–475. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Woollard AC, Tatham KC and Barker S: The influence of essential oils on the processå of wound healing: a review of the current evidence. J Wound Care. 16:255–257. 2007.

3 

Prabuseenivasan S, Jayakumar M and Ignacimuthu S: In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med. 6:392006. View Article : Google Scholar : PubMed/NCBI

4 

Clarke JO and Mullin GE: A review of complementary and alternative approaches to immunomodulation. Nutr Clin Pract. 23:49–62. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Wüthrich B: Epidemiology of the allergic diseases: are they really on the increase? Int Arch Allergy Appl Immunol. 90(Suppl 1): S3–S10. 1989.PubMed/NCBI

6 

Stevens RL and Austen KF: Recent advances in the cellular and molecular biology of mast cells. Immunol Today. 10:381–386. 1989. View Article : Google Scholar : PubMed/NCBI

7 

Plaut M, Pierce JH, Watson CJ, Hanley-Hyde J, Nordan RP and Paul WE: Mast cell lines produce lymphokines in response to cross-linkage of Fc epsilon RI or to calcium ionophores. Nature. 339:64–67. 1989. View Article : Google Scholar : PubMed/NCBI

8 

Gordon JR, Burd PR and Galli SJ: Mast cells as a source of multifunctional cytokines. Immunol Today. 11:458–464. 1990.PubMed/NCBI

9 

Ronis MJ, Butura A, Korourian S, Shankar K, Simpson P, Badeaux J, Albano E, Ingelman-Sundberg M and Badger TM: Cytokine and chemokine expression associated with steatohepatitis and hepatocyte proliferation in rats fed ethanol via total enteral nutrition. Exp Biol Med (Maywood). 233:344–355. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Pierce GF: Macrophages: important physiologic and pathologic sources of polypeptide growth factors. Am J Respir Cell Mol Biol. 2:233–234. 1990.PubMed/NCBI

11 

Boscá L, Zeini M, Través PG and Hortelano S: Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology. 208:249–258. 2005.PubMed/NCBI

12 

Hirano M, Yakabe S, Chikamori H, Clark JH and Morimoto T: Oxidation by chemical manganese dioxide. Part 3. Oxidation of benzylic and allylic alcohols, hydroxyarenes and aminoarenes. J Chem Res (S). 770–771. 1998. View Article : Google Scholar

13 

Razin E, Mencia-Huerta JM, Stevens RL, Lewis RA, Liu FT, Corey E and Austen KF: IgE-mediated release of leukotriene C4, chondroitin sulfate E proteoglycan, beta-hexosaminidase, and histamine from cultured bone marrow-derived mouse mast cells. J Exp Med. 157:189–201. 1983. View Article : Google Scholar : PubMed/NCBI

14 

Sato H, Kobayashi Y, Hattori A, Suzuki T, Shigekawa M and Jippo T: Inhibitory effects of water-soluble low-molecular-weight β-(1,3-1,6) D-glucan isolated from Aureobasidium pullulans 1A1 strain black yeast on mast cell degranulation and passive cutaneous anaphylaxis. Biosci Biotechnol Biochem. 76:84–88. 2012.

15 

Nishiumi S, Yamamoto N, Kodoi R, Fukuda I, Yoshida K and Ashida H: Antagonistic and agonistic effects of indigoids on the transformation of an aryl hydrocarbon receptor. Arch Biochem Biophys. 470:187–199. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Gschwendt M, Kittstein W, Fürstenberger G and Marks F: The mouse ear edema: a quantitatively evaluable assay for tumor promoting compounds and for inhibitors of tumor promotion. Cancer Lett. 25:177–185. 1984. View Article : Google Scholar : PubMed/NCBI

17 

Aggarwal BB: Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 3:745–756. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Hashimoto T, Nonaka Y, Minato K, Kawakami S, Mizuno M, Fukuda I, Kanazawa K and Ashida H: Suppressive effect of polysaccharides from the edible and medicinal mushrooms, Lentinus edodes and Agaricus blazei, on the expression of cytochrome P450s in mice. Biosci Biotechnol Biochem. 66:1610–1614. 2002. View Article : Google Scholar : PubMed/NCBI

19 

Jacobs MD and Harrison SC: Structure of an IkappaBalpha/NF-kappaB complex. Cell. 95:749–758. 1998. View Article : Google Scholar : PubMed/NCBI

20 

Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D and Miyamoto S: Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 9:2723–2735. 1995. View Article : Google Scholar : PubMed/NCBI

21 

Cheng SS, Lin HY and Chang ST: Chemical composition and antifungal activity of essential oils from different tissues of Japanese Cedar (Cryptomeria japonica). J Agric Food Chem. 53:614–619. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Bakrouf A, Magné C and Abdelly C: Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol. 47:2083–2091. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Lo Cantore P, Shanmugaiah V and Iacobellis NS: Antibacterial activity of essential oil components and their potential use in seed disinfection. J Agric Food Chem. 57:9454–9461. 2009.PubMed/NCBI

24 

Dutra RC, Leite MN and Barbosa NR: Quantification of phenolic constituents and antioxidant activity of Pterodon emarginatus vogel seeds. Int J Mol Sci. 9:606–614. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Kumar A, Malik F, Bhushan S, Sethi VK, Shahi AK, Kaur J, Taneja SC, Qazi GN and Singh J: An essential oil and its major constituent isointermedeol induce apoptosis by increased expression of mitochondrial cytochrome c and apical death receptors in human leukaemia HL-60 cells. Chem Biol Interact. 171:332–347. 2008. View Article : Google Scholar

26 

Chao LK, Hua KF, Hsu HY, Cheng SS, Liu JY and Chang ST: Study on the antiinflammatory activity of essential oil from leaves of Cinnamomum osmophloeum. J Agric Food Chem. 53:7274–7278. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Lourens AC, Reddy D, Başer KH, Viljoen AM and Van Vuuren SF: In vitro biological activity and essential oil composition of four indigenous South African Helichrysum species. J Ethnopharmacol. 95:253–258. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Tsukahara H, Shibata R, Ohshima Y, Todoroki Y, Sato S, Ohta N, Hiraoka M, Yoshida A, Nishima S and Mayumi M: Oxidative stress and altered antioxidant defenses in children with acute exacerbation of atopic dermatitis. Life Sci. 72:2509–2516. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Grange PA, Chéreau C, Raingeaud J, Nicco C, Weill B, Dupin N and Batteux F: Production of superoxide anions by keratinocytes initiates P. acnes-induced inflammation of the skin. PLoS Pathog. 5:e10005272009. View Article : Google Scholar : PubMed/NCBI

30 

Kamatou GP, Viljoen AM, Gono-Bwalya AB, van Zyl RL, van Vuuren SF, Lourens AC, Başer KH, Demirci B, Lindsey KL, van Staden J and Steenkamp P: The in vitro pharmacological activities and a chemical investigation of three South African Salvia species. J Ethnopharmacol. 102:382–390. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Medeiros R, Otuki MF, Avellar MC and Calixto JB: Mechanisms underlying the inhibitory actions of the pentacyclic triterpene alpha-amyrin in the mouse skin inflammation induced by phorbol ester 12-O-tetradecanoylphorbol-13-acetate. Eur J Pharmacol. 559:227–235. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Shah G, Shri R, Panchal V, Sharma N, Singh B and Mann AS: Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J Adv Pharm Technol Res. 2:3–8. 2011. View Article : Google Scholar

Related Articles

Journal Cover

June 2014
Volume 33 Issue 6

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Mitoshi, M., Kuriyama, I., Nakayama, H., Miyazato, H., Sugimoto, K., Kobayashi, Y. ... Mizushina, Y. (2014). Suppression of allergic and inflammatory responses by essential oils derived from herbal plants and citrus fruits. International Journal of Molecular Medicine, 33, 1643-1651. https://doi.org/10.3892/ijmm.2014.1720
MLA
Mitoshi, M., Kuriyama, I., Nakayama, H., Miyazato, H., Sugimoto, K., Kobayashi, Y., Jippo, T., Kuramochi, K., Yoshida, H., Mizushina, Y."Suppression of allergic and inflammatory responses by essential oils derived from herbal plants and citrus fruits". International Journal of Molecular Medicine 33.6 (2014): 1643-1651.
Chicago
Mitoshi, M., Kuriyama, I., Nakayama, H., Miyazato, H., Sugimoto, K., Kobayashi, Y., Jippo, T., Kuramochi, K., Yoshida, H., Mizushina, Y."Suppression of allergic and inflammatory responses by essential oils derived from herbal plants and citrus fruits". International Journal of Molecular Medicine 33, no. 6 (2014): 1643-1651. https://doi.org/10.3892/ijmm.2014.1720