Open Access

Beneficial effects of muscone on cardiac remodeling in a mouse model of myocardial infarction

  • Authors:
    • Xiaoyan Wang
    • Haoyu Meng
    • Pengsheng Chen
    • Naiquan Yang
    • Xin Lu
    • Ze-Mu Wang
    • Wei Gao
    • Ningtian Zhou
    • Min Zhang
    • Zhihui Xu
    • Bo Chen
    • Zhengxian Tao
    • Liangsheng Wang
    • Zhijian Yang
    • Tiebin Zhu
  • View Affiliations

  • Published online on: May 2, 2014     https://doi.org/10.3892/ijmm.2014.1766
  • Pages: 103-111
  • Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Musk has been traditionally used in East Asia to alleviate the symptoms of angina pectoris. However, it remains unclear as to whether muscone, the main active ingredient of musk, has any beneficial effects on persistent myocardial ischemia in vivo. The aim of the present study was to investigate whether muscone can improve cardiac function and attenuate myocardial remodeling following myocardial infarction (MI) in mice. Mice were subjected to permanent ligation of the left anterior descending coronary artery to induce MI, and then randomly treated with muscone (2 mg/kg/day) or the vehicle (normal saline) for 3 weeks. Sham-operated mice were used as controls and were also administered the vehicle (normal saline). Treatment with muscone significantly improved cardiac function and exercise tolerance, as evidenced by the decrease in the left ventricular end-systolic diameter, left ventricular end-diastolic diameter, as well as an increase in the left ventricular ejection fraction, left ventricular fractional shortening and time to exhaustion during swimming. Pathological and morphological assessments indicated that treatment with muscone alleviated myocardial fibrosis, collagen deposition and improved the heart weight/body weight ratio. Muscone inhibited the inflammatory response by reducing the expression of transforming growth factor (TGF)‑β1, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and nuclear factor (NF)-κB. Treatment with muscone also reduced myocardial apoptosis by enhancing Bcl-2 and suppressing Bax expression. Muscone also induced the phosphorylation of protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS). Our results demonstrate that muscone ameliorates cardiac remodeling and dysfunction induced by MI by exerting anti-fibrotic, anti-inflammatory and anti-apoptotic effects in the ischemic myocardium.

References

1 

Lin DL, Chang HC and Huang SH: Characterization of allegedly musk-containing medicinal products in Taiwan. J Forensic Sci. 49:1187–1193. 2004.PubMed/NCBI

2 

Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D and Turner MB: Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 127:e6–e245. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Hung J, Teng TH, Finn J, Knuiman M, Briffa T, Stewart S, Sanfilippo FM, Ridout S and Hobbs M: Trends from 1996 to 2007 in incidence and mortality outcomes of heart failure after acute myocardial infarction: a population-based study of 20,812 patients with first acute myocardial infarction in Western Australia. J Am Heart Assoc. 2:e0001722013. View Article : Google Scholar : PubMed/NCBI

4 

Sun Y, Zhang JQ, Zhang J and Lamparter S: Cardiac remodeling by fibrous tissue after infarction in rats. J Lab Clin Med. 135:316–323. 2000. View Article : Google Scholar : PubMed/NCBI

5 

See F, Kompa A, Martin J, Lewis DA and Krum H: Fibrosis as a therapeutic target post-myocardial infarction. Curr Pharm Des. 11:477–487. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Tucci PJ: Pathophysiological characteristics of the post-myocardial infarction heart failure model in rats. Arq Bras Cardiol. 96:420–424. 2011.PubMed/NCBI

7 

Rohde LE, Ducharme A, Arroyo LH, Aikawa M, Sukhova GH, Lopez-Anaya A, McClure KF, Mitchell PG, Libby P and Lee RT: Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation. 99:3063–3070. 1999. View Article : Google Scholar

8 

Lindsey ML, Mann DL, Entman ML and Spinale FG: Extracellular matrix remodeling following myocardial injury. Ann Med. 35:316–326. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Yan SK, Zhang WD, Liu RH and Zhan YC: Chemical fingerprinting of Shexiang Baoxin Pill and simultaneous determination of its major constituents by HPLC with evaporative light scattering detection and electrospray mass spectrometric detection. Chem Pharm Bull (Tokyo). 54:1058–1062. 2006. View Article : Google Scholar

10 

Shen W, Fan WH and Shi HM: Effects of shexiang baoxin pill on angiogenesis in atherosclerosis plaque and ischemic myocardium. Zhongguo Zhong Xi Yi Jie He Za Zhi. 30:1284–1287. 2010.(In Chinese).

11 

Fan X, Shi M, Wang Y, Liang Q and Luo G: Transcriptional profiling analysis of HMP-treated rats with experimentally induced myocardial infarction. J Ethnopharmacol. 137:199–204. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Wu DJ, Hong HS and Jiang Q: Effect of shexiang baoxin pill in alleviating myocardial fibrosis in spontaneous hypertensive rats. Zhongguo Zhong Xi Yi Jie He Za Zhi. 25:350–353. 2005.(In Chinese).

13 

Cai YM, He Y, Qiu T, Zou J, Sun DP, Peng QH, Jia RX and Zhao HR: Research on frequency of application with modern Chinese herbal medicine. Chin J Integr Med. 17:64–70. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Wang LJ, Luo XP and Wang Y: Evaluation on tolerability and safety of long-term administration with shexiang baoxin pill in patients with coronary heart disease of stable angina pectoris. Zhongguo Zhong Xi Yi Jie He Za Zhi. 28:399–401. 2008.(In Chinese).

15 

Wang S, Zheng Z, Weng Y, Yu Y, Zhang D, Fan W, Dai R and Hu Z: Angiogenesis and anti-angiogenesis activity of Chinese medicinal herbal extracts. Life Sci. 74:2467–2478. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Xiang L, Jiang P, Zhan C, Chen Z, Liu X, Huang X, Wang S, Hu Y, Zhang W and Liu R: The serum metabolomic study of intervention effects of the traditional Chinese medicine Shexiang Baoxin Pill and a multi-component medicine polypill in the treatment of myocardial infarction in rats. Mol Biosyst. 8:2434–2442. 2012. View Article : Google Scholar

17 

Sun R, Zhang ZP, Huang W, Lv LP and Ren HY: Protective effects of muskone on rats with complete cerebral ischemia. Trad Chin Drug Res Clin Pharmacol. 20:197–200. 2009.(In Chinese).

18 

Wei G, Chen DF, Lai XP, Liu DH, Deng RD, Zhou JH, Zhang SX, Li YW, Li H and Zhang QD: Muscone exerts neuroprotection in an experimental model of stroke via inhibition of the fas pathway. Nat Prod Commun. 7:1069–1074. 2012.PubMed/NCBI

19 

Tanaka E, Funae Y, Imaoka S and Misawa S: Characterization of liver microsomal cytochrome P450 from rats treated with muscone (3-methylcyclopentadecanone). Biochem Pharmacol. 41:472–473. 1991. View Article : Google Scholar : PubMed/NCBI

20 

Wu Q, Li H, Wu Y, Shen W, Zeng L, Cheng H and He L: Protective effects of muscone on ischemia-reperfusion injury in cardiac myocytes. J Ethnopharmacol. 138:34–39. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Hori M and Nishida K: Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc Res. 81:457–464. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Vilahur G, Juan-Babot O, Pena E, Onate B, Casani L and Badimon L: Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction. J Mol Cell Cardiol. 50:522–533. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Yang C, Talukder MA, Varadharaj S, Velayutham M and Zweier JL: Early ischaemic preconditioning requires Akt- and PKA-mediated activation of eNOS via serine1176 phosphorylation. Cardiovasc Res. 97:33–43. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Chen LL, Zhu TB, Yin H, Huang J, Wang LS, Cao KJ and Yang ZJ: Inhibition of MAPK signaling by eNOS gene transfer improves ventricular remodeling after myocardial infarction through reduction of inflammation. Mol Biol Rep. 37:3067–3072. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Wu JX, Liang C and Ren YS: Effects of shexiang baoxin pill on function and nitric oxide secretion of endothelial progenitor cells. Zhongguo Zhong Xi Yi Jie He Za Zhi. 29:511–513. 2009.(In Chinese).

26 

Salto-Tellez M, Yung Lim S, El-Oakley RM, Tang TP, Za AL and Lim SK: Myocardial infarction in the C57BL/6J mouse: a quantifiable and highly reproducible experimental model. Cardiovasc Pathol. 13:91–97. 2004. View Article : Google Scholar

27 

Liang H and Luo BY: The study of muscone on attenuating excitotoxicity during acute cerebral ischemia. Zhong Yao Yao Li Yu Lin Chuang. 21:12–13. 2005.(In Chinese).

28 

Vivar R, Humeres C, Ayala P, Olmedo I, Catalan M, Garcia L, Lavandero S and Diaz-Araya G: TGF-beta1 prevents simulated ischemia/reperfusion-induced cardiac fibroblast apoptosis by activation of both canonical and non-canonical signaling pathways. Biochim Biophys Acta. 1832.754–762. 2013.PubMed/NCBI

29 

Gu Q, Yang XP, Bonde P, DiPaula A, Fox-Talbot K and Becker LC: Inhibition of TNF-alpha reduces myocardial injury and proinflammatory pathways following ischemia-reperfusion in the dog. J Cardiovasc Pharmacol. 48:320–328. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Siwik DA, Chang DL and Colucci WS: Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res. 86:1259–1265. 2000. View Article : Google Scholar

31 

Stephenson D, Yin T, Smalstig EB, Hsu MA, Panetta J, Little S and Clemens J: Transcription factor nuclear factor-kappa B is activated in neurons after focal cerebral ischemia. J Cereb Blood Flow Metab. 20:592–603. 2000. View Article : Google Scholar : PubMed/NCBI

32 

Ogawa K, Chen F, Kuang C and Chen Y: Suppression of matrix metalloproteinase-9 transcription by transforming growth factor-beta is mediated by a nuclear factor-kappaB site. Biochem J. 381:413–422. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H, Yamaguchi O, Mano T, Matsumura Y, Ueno H, Tada M and Hori M: Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation. 105:509–515. 2002. View Article : Google Scholar

34 

Morishita R, Sugimoto T, Aoki M, Kida I, Tomita N, Moriguchi A, Maeda K, Sawa Y, Kaneda Y, Higaki J and Ogihara T: In vivo transfection of cis element ‘decoy’ against nuclear factor-kappaB binding site prevents myocardial infarction. Nat Med. 3:894–899. 1997.

35 

Elsasser A, Vogt AM, Nef H, Kostin S, Mollmann H, Skwara W, Bode C, Hamm C and Schaper J: Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol. 43:2191–2199. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Crow MT, Mani K, Nam YJ and Kitsis RN: The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res. 95:957–970. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Kluck RM, Bossy-Wetzel E, Green DR and Newmeyer DD: The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 275:1132–1136. 1997. View Article : Google Scholar : PubMed/NCBI

38 

Grimm S, Bauer MK, Baeuerle PA and Schulze-Osthoff K: Bcl-2 down-regulates the activity of transcription factor NF-kappaB induced upon apoptosis. J Cell Biol. 134:13–23. 1996. View Article : Google Scholar : PubMed/NCBI

39 

Syed FM, Hahn HS, Odley A, Guo Y, Vallejo JG, Lynch RA, Mann DL, Bolli R and Dorn GW: Proapoptotic effects of caspase-1/interleukin-converting enzyme dominate in myocardial ischemia. Circ Res. 96:1103–1109. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Sharma S, Singh M and Sharma PL: Mechanism of hyperhomocysteinemia-induced vascular endothelium dysfunction - possible dysregulation of phosphatidylinositol-3-kinase and its downstream phosphoinositide dependent kinase and protein kinase B. Eur J Pharmacol. 721:365–372. 2013. View Article : Google Scholar

41 

Yasuda S, Kobayashi H, Iwasa M, Kawamura I, Sumi S, Narentuoya B, Yamaki T, Ushikoshi H, Nishigaki K, Nagashima K, Takemura G, Fujiwara T, Fujiwara H and Minatoguchi S: Antidiabetic drug pioglitazone protects the heart via activation of PPAR-gamma receptors, PI3-kinase, Akt, and eNOS pathway in a rabbit model of myocardial infarction. Am J Physiol Heart Circ Physiol. 296:H1558–H1565. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A and Sessa WC: Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 399:597–601. 1999. View Article : Google Scholar : PubMed/NCBI

43 

Bell RM and Yellon DM: Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart: the role of PI3K, Akt and eNOS. J Mol Cell Cardiol. 35:185–193. 2003. View Article : Google Scholar : PubMed/NCBI

44 

Tsutsumi YM, Tsutsumi R, Mawatari K, Nakaya Y, Kinoshita M, Tanaka K and Oshita S: Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/PI3K pathway. Life Sci. 88:725–729. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Balakumar P, Kathuria S, Taneja G, Kalra S and Mahadevan N: Is targeting eNOS a key mechanistic insight of cardiovascular defensive potentials of statins? J Mol Cell Cardiol. 52:83–92. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Zhao X, Lu X and Feng Q: Deficiency in endothelial nitric oxide synthase impairs myocardial angiogenesis. American journal of physiology Am J Physiol Heart Circ Physiol. 283:H2371–H2378. 2002.PubMed/NCBI

Related Articles

Journal Cover

July 2014
Volume 34 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wang, X., Meng, H., Chen, P., Yang, N., Lu, X., Wang, Z. ... Zhu, T. (2014). Beneficial effects of muscone on cardiac remodeling in a mouse model of myocardial infarction. International Journal of Molecular Medicine, 34, 103-111. https://doi.org/10.3892/ijmm.2014.1766
MLA
Wang, X., Meng, H., Chen, P., Yang, N., Lu, X., Wang, Z., Gao, W., Zhou, N., Zhang, M., Xu, Z., Chen, B., Tao, Z., Wang, L., Yang, Z., Zhu, T."Beneficial effects of muscone on cardiac remodeling in a mouse model of myocardial infarction". International Journal of Molecular Medicine 34.1 (2014): 103-111.
Chicago
Wang, X., Meng, H., Chen, P., Yang, N., Lu, X., Wang, Z., Gao, W., Zhou, N., Zhang, M., Xu, Z., Chen, B., Tao, Z., Wang, L., Yang, Z., Zhu, T."Beneficial effects of muscone on cardiac remodeling in a mouse model of myocardial infarction". International Journal of Molecular Medicine 34, no. 1 (2014): 103-111. https://doi.org/10.3892/ijmm.2014.1766