Open Access

Geldanamycin attenuates 3‑nitropropionic acid‑induced apoptosis and JNK activation through the expression of HSP 70 in striatal cells

  • Authors:
    • Yong‑Joon Choi
    • Nam Ho Kim
    • Man Sup Lim
    • Hee Jae Lee
    • Sung Soo Kim
    • Wanjoo Chun
  • View Affiliations

  • Published online on: April 22, 2014     https://doi.org/10.3892/ijmm.2014.1747
  • Pages: 24-34
  • Copyright: © Choi et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Although selective striatal cell death is a characteristic hallmark in the pathogenesis of Huntington's disease (HD), the underlying mechanism of striatal susceptibility remains to be clarified. Heat shock proteins (HSPs) have been reported to suppress the aggregate formation of mutant huntingtin and concurrent striatal cell death. In a previous study, we observed that heat shock transcription factor 1 (HSF1), a major transcription factor of HSPs, significantly attenuated 3‑nitropropionic acid (3NP)‑induced reactive oxygen species (ROS) production and apoptosis through the expression of HSP 70 in striatal cells. To investigate the differential roles of HSPs in 3NP‑induced striatal cell death, the effect of geldanamycin (GA), an HSP 90 inhibitor, was examined in 3NP‑stimulated striatal cells. GA significantly attenuated 3NP‑induced striatal apoptosis and ROS production with an increased expression of HSP 70. Triptolide (TL), an HSP 70 inhibitor, abolished GA‑mediated protective effects in 3NP‑stimulated striatal cells. To understand the underlying mechanism by which GA‑mediated HSP 70 protects striatal cells against 3NP stimulation, the involvement of various signaling pathways was examined. GA significantly attenuated 3NP‑induced c‑Jun N‑terminal kinase (JNK) phosphorylation and subsequent c‑Jun phosphorylation in striatal cells. Taken together, the present study demonstrated that GA exhibits protective properties against 3NP‑induced apoptosis and JNK activation via the induction of HSP 70 in striatal cells, suggesting that expression of HSP 70 may be a valuable therapeutic target in the treatment of HD.

References

1 

Andrew SE, Goldberg YP, Kremer B, et al: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet. 4:398–403. 1993.

2 

Vonsattel JP and DiFiglia M: Huntington disease. J Neuropathol Exp Neurol. 57:369–384. 1998. View Article : Google Scholar

3 

Beal MF: Mitochondria take center stage in aging and neurodegeneration. Ann Neurol. 58:495–505. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Oliveira JM, Jekabsons MB, Chen S, et al: Mitochondrial dysfunction in Huntington’s disease: the bioenergetics of isolated and in situ mitochondria from transgenic mice. J Neurochem. 101:241–249. 2007.

5 

Garcia M, Vanhoutte P, Pages C, Besson MJ, Brouillet E and Caboche J: The mitochondrial toxin 3-nitropropionic acid induces striatal neurodegeneration via a c-Jun N-terminal kinase/c-Jun module. J Neurosci. 22:2174–2184. 2002.PubMed/NCBI

6 

Brouillet E, Condé F, Beal MF and Hantraye P: Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol. 59:427–468. 1999.

7 

Choi YJ, Om JY, Kim NH, et al: Heat shock transcription factor-1 suppresses apoptotic cell death and ROS generation in 3-nitropropionic acid-stimulated striatal cells. Mol Cell Biochem. 375:59–67. 2013.PubMed/NCBI

8 

Dedeoglu A, Ferrante RJ, Andreassen OA, Dillmann WH and Beal MF: Mice overexpressing 70-kDa heat shock protein show increased resistance to malonate and 3-nitropropionic acid. Exp Neurol. 176:262–265. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Takayama S, Reed JC and Homma S: Heat-shock proteins as regulators of apoptosis. Oncogene. 22:9041–9047. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Beere HM, Wolf BB, Cain K, et al: Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol. 2:469–475. 2000. View Article : Google Scholar : PubMed/NCBI

11 

Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT and Zoghbi HY: Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet. 19:148–154. 1998. View Article : Google Scholar

12 

Kobayashi Y, Kume A, Li M, et al: Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem. 275:8772–8778. 2000. View Article : Google Scholar

13 

Wyttenbach A, Swartz J, Kita H, et al: Polyglutamine expansions cause decreased CRE-mediated transcription and early gene expression changes prior to cell death in an inducible cell model of Huntington’s disease. Hum Mol Genet. 10:1829–1845. 2001.PubMed/NCBI

14 

Mosser DD, Caron AW, Bourget L, Denis-Larose C and Massie B: Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol. 17:5317–5327. 1997.PubMed/NCBI

15 

Jäättelä M, Wissing D, Kokholm K, Kallunki T and Egeblad M: Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 17:6124–6134. 1998.PubMed/NCBI

16 

Mosser DD, Caron AW, Bourget L, et al: The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol. 20:7146–7159. 2000. View Article : Google Scholar : PubMed/NCBI

17 

Ravagnan L, Gurbuxani S, Susin SA, et al: Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol. 3:839–843. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Gurbuxani S, Schmitt E, Cande C, et al: Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene. 22:6669–6678. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Koga F, Xu W, Karpova TS, McNally JG, Baron R and Neckers L: Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proc Natl Acad Sci USA. 103:11318–11322. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Schulte TW, Akinaga S, Soga S, et al: Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones. 3:100–108. 1998. View Article : Google Scholar : PubMed/NCBI

21 

Zou J, Guo Y, Guettouche T, Smith DF and Voellmy R: Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell. 94:471–480. 1998. View Article : Google Scholar : PubMed/NCBI

22 

Bagatell R, Paine-Murrieta GD, Taylor CW, et al: Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents. Clin Cancer Res. 6:3312–3318. 2000.PubMed/NCBI

23 

Sittler A, Lurz R, Lueder G, et al: Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet. 10:1307–1315. 2001.PubMed/NCBI

24 

Bian X, McAllister-Lucas LM, Shao F, et al: NF-kappa B activation mediates doxorubicin-induced cell death in N-type neuroblastoma cells. J Biol Chem. 276:48921–48929. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Bubici C, Papa S, Pham CG, Zazzeroni F and Franzoso G: The NF-kappaB-mediated control of ROS and JNK signaling. Histol Histopathol. 21:69–80. 2006.PubMed/NCBI

26 

Dumont A, Hehner SP, Hofmann TG, Ueffing M, Dröge W and Schmitz ML: Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene. 18:747–757. 1999. View Article : Google Scholar : PubMed/NCBI

27 

Westerheide SD, Kawahara TL, Orton K and Morimoto RI: Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem. 281:9616–9622. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Wyttenbach A: Role of heat shock proteins during polyglutamine neurodegeneration: mechanisms and hypothesis. J Mol Neurosci. 23:69–96. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Muchowski PJ and Wacker JL: Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci. 6:11–22. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Ciocca DR, Clark GM, Tandon AK, Fuqua SA, Welch WJ and McGuire WL: Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J Natl Cancer Inst. 85:570–574. 1993. View Article : Google Scholar : PubMed/NCBI

31 

Dive C and Hickman JA: Drug-target interactions: only the first step in the commitment to a programmed cell death? Br J Cancer. 64:192–196. 1991. View Article : Google Scholar : PubMed/NCBI

32 

Seo JS, Park YM, Kim JI, et al: T cell lymphoma in transgenic mice expressing the human Hsp70 gene. Biochem Biophys Res Commun. 218:582–587. 1996. View Article : Google Scholar : PubMed/NCBI

33 

Wei YQ, Zhao X, Kariya Y, Teshigawara K and Uchida A: Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) 70 expression in tumor cells. Cancer Immunol Immunother. 40:73–78. 1995. View Article : Google Scholar : PubMed/NCBI

34 

Haldimann P, Muriset M, Vigh L and Goloubinoff P: The novel hydroxylamine derivative NG-094 suppresses polyglutamine protein toxicity in Caenorhabditis elegans. J Biol Chem. 286:18784–18794

35 

Neckers L: Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med. 8:S55–S61. 2002. View Article : Google Scholar : PubMed/NCBI

36 

Panaretou B, Prodromou C, Roe SM, et al: ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J. 17:4829–4836. 1998. View Article : Google Scholar : PubMed/NCBI

37 

Grenert JP, Johnson BD and Toft DO: The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes. J Biol Chem. 274:17525–17533. 1999. View Article : Google Scholar : PubMed/NCBI

38 

Schneider C, Sepp-Lorenzino L, Nimmesgern E, et al: Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc Natl Acad Sci USA. 93:14536–14541. 1996. View Article : Google Scholar : PubMed/NCBI

39 

Connell P, Ballinger CA, Jiang J, et al: The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol. 3:93–96. 2001. View Article : Google Scholar : PubMed/NCBI

40 

Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C and Neckers L: Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci USA. 99:12847–12852. 2002. View Article : Google Scholar : PubMed/NCBI

41 

Wacker JL, Huang SY, Steele AD, et al: Loss of Hsp70 exacerbates pathogenesis but not levels of fibrillar aggregates in a mouse model of Huntington’s disease. J Neurosci. 29:9104–9114. 2009.

42 

Shen HY, He JC, Wang Y, Huang QY and Chen JF: Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem. 280:39962–39969. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Beal MF: Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci. 23:298–304. 2000. View Article : Google Scholar : PubMed/NCBI

44 

Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM and Schapira AH: Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol. 39:385–389. 1996.

45 

Browne SE, Bowling AC, MacGarvey U, et al: Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol. 41:646–653. 1997.

46 

Sawa A, Wiegand GW, Cooper J, et al: Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat Med. 5:1194–1198. 1999. View Article : Google Scholar

47 

Beal MF, Brouillet E, Jenkins BG, et al: Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci. 13:4181–4192. 1993.

48 

Hamilton BF and Gould DH: Nature and distribution of brain lesions in rats intoxicated with 3-nitropropionic acid: a type of hypoxic (energy deficient) brain damage. Acta Neuropathol. 72:286–297. 1987. View Article : Google Scholar : PubMed/NCBI

49 

Brouillet E, Hantraye P, Ferrante RJ, et al: Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA. 92:7105–7109. 1995. View Article : Google Scholar

50 

Palfi S, Ferrante RJ, Brouillet E, et al: Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. J Neurosci. 16:3019–3025. 1996.PubMed/NCBI

51 

Gabai VL, Meriin AB, Yaglom JA, Volloch VZ and Sherman MY: Role of Hsp70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Lett. 438:1–4. 1998. View Article : Google Scholar : PubMed/NCBI

52 

Meriin AB, Yaglom JA, Gabai VL, et al: Protein-damaging stresses activate c-Jun N-terminal kinase via inhibition of its dephosphorylation: a novel pathway controlled by HSP72. Mol Cell Biol. 19:2547–2555. 1999.PubMed/NCBI

53 

Kyriakis JM and Avruch J: Protein kinase cascades activated by stress and inflammatory cytokines. Bioessays. 18:567–577. 1996. View Article : Google Scholar : PubMed/NCBI

54 

Park HS, Lee JS, Huh SH, Seo JS and Choi EJ: Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J. 20:446–456. 2001. View Article : Google Scholar : PubMed/NCBI

55 

Lee JS, Lee JJ and Seo JS: HSP70 deficiency results in activation of c-Jun N-terminal Kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J Biol Chem. 280:6634–6641. 2005. View Article : Google Scholar : PubMed/NCBI

56 

Li H, Liu L, Xing D and Chen WR: Inhibition of the JNK/Bim pathway by Hsp70 prevents Bax activation in UV-induced apoptosis. FEBS Lett. 584:4672–4678. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

July 2014
Volume 34 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Choi, Y., Kim, N.H., Lim, M.S., Lee, H.J., Kim, S.S., & Chun, W. (2014). Geldanamycin attenuates 3‑nitropropionic acid‑induced apoptosis and JNK activation through the expression of HSP 70 in striatal cells. International Journal of Molecular Medicine, 34, 24-34. https://doi.org/10.3892/ijmm.2014.1747
MLA
Choi, Y., Kim, N. H., Lim, M. S., Lee, H. J., Kim, S. S., Chun, W."Geldanamycin attenuates 3‑nitropropionic acid‑induced apoptosis and JNK activation through the expression of HSP 70 in striatal cells". International Journal of Molecular Medicine 34.1 (2014): 24-34.
Chicago
Choi, Y., Kim, N. H., Lim, M. S., Lee, H. J., Kim, S. S., Chun, W."Geldanamycin attenuates 3‑nitropropionic acid‑induced apoptosis and JNK activation through the expression of HSP 70 in striatal cells". International Journal of Molecular Medicine 34, no. 1 (2014): 24-34. https://doi.org/10.3892/ijmm.2014.1747