Lipopolysaccharide/adenosine triphosphate induces IL‑1β and IL-18 secretion through the NLRP3 inflammasome in RAW264.7 murine macrophage cells

  • Authors:
    • Qiang Xie
    • Wen-Wen Shen
    • Jian Zhong
    • Cheng Huang
    • Lei Zhang
    • Jun Li
  • View Affiliations

  • Published online on: April 24, 2014     https://doi.org/10.3892/ijmm.2014.1755
  • Pages: 341-349
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome plays pivotal roles in inflammation and autoimmunity. The NLRP3 inflammasome is activated in response to various signals, including pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). However, its role in inflammation remains unclear. In this study, we used lipopolysaccharide (LPS) and adenosine triphosphate (ATP) to simulate an inflammatory environment as the testing model. We found that the exposure of RAW264.7 cells to LPS/ATP triggered the activation of caspase-1 (P<0.01) and the cleavage of interleukin (IL)-1β (P<0.01), as well as the release of other cytokines, such as IL-18 (P<0.01) and IL-33 (P<0.01). Extracellular potassium chloride at a high concentration (150 mM) abrogated the secretion of IL-1β and IL-18 (P<0.01), but did not reduce the processing of IL-33 (P>0.05). In addition, the silencing of NLRP3 with small interfering RNA (siRNA) suppressed the generation of proinflammatory cytokines, such as IL-1β (P<0.01), IL-18 (P<0.01), but not IL-33 (P>0.05), along with the decreased mRNA and protein expression of NLRP3 and caspase-1 (P<0.05). However, extracellular potassium at a high concentration and NLRP3 siRNA did not affect the level of apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC; P>0.05). Our results suggest that the NLRP3/ASC/caspase-1 axis participates in the regulation of pro-imflammatory cytokine secretion in RAW264.7 cells, particularly the generation of IL-1β and IL-18.

References

1 

Martinon F, Mayor A and Tschopp J: The inflammasomes: guardians of the body. Annu Rev Immunol. 27:229–265. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Franchi L, Eigenbrod T and Núñez G: Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol. 183:792–796. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Jin C and Flavell RA: Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol. 30:628–631. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Conforti-Andreoni C, Ricciardi-Castagnoli P and Mortellaro A: The inflammasomes in health and disease: from genetics to molecular mechanisms of autoinflammation and beyond. Cell Mol Immunol. 8:135–145. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Schroder K and Tschopp J: The inflammasomes. Cell. 140:821–832. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Chen M, Wang H, Chen W and Meng G: Regulation of adaptive immunity by the NLRP3 inflammasome. Int Immunopharmacol. 11:549–554. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Leemans JC, Cassel SL and Sutterwala FS: Sensing damage by the NLRP3 inflammasome. Immunol Rev. 243:152–162. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Davis BK, Wen H and Ting JP: The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 29:707–735. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Cassel SL, Joly S and Sutterwala FS: The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol. 21:194–198. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Hsu HY and Wen MH: Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J Biol Chem. 277:22131–22139. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM and Dixit VM: Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 440:228–232. 2006. View Article : Google Scholar : PubMed/NCBI

12 

van de Veerdonk FL and Netea MG: New insights in the immunobiology of IL-1 family members. Front Immunol. 4:1672013.PubMed/NCBI

13 

Qi J, Ye X, Ren G, Kan F, Zhang Y, Guo M, Zhang Z and Li D: Pharmacological efficacy of anti-IL-1β scFv, Fab and full-length antibodies in treatment of rheumatoid arthritis. Mol Immunol. 57:59–65. 2014.

14 

Voronov E, Dayan M, Zinger H, Gayvoronsky L, Lin JP, Iwakura Y, Apte RN and Mozes E: IL-1 beta-deficient mice are resistant to induction of experimental SLE. Eur Cytokine Netw. 17:109–116. 2006.PubMed/NCBI

15 

Girardin SE: Knocking in the NLRP3 inflammasome. Immunity. 30:761–763. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Latz E: The inflammasomes: mechanisms of activation and function. Curr Opin Immunol. 22:28–33. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Budai MM, Varga A, Milesz S, Tozser J and Benko S: Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages. Mol Immunol. 56:471–479. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Hussen J, Düvel A, Koy M and Schuberth HJ: Inflammasome activation in bovine monocytes by extracellular ATP does not require the purinergic receptor P2X7. Dev Comp Immunol. 38:312–320. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F and Tschopp J: Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14:1583–1589. 2007.PubMed/NCBI

20 

Kawai T and Akira S: Innate immune recognition of viral infection. Nat Immunol. 7:131–137. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Bose S and Banerjee AK: Innate immune response against nonsegmented negative strand RNA viruses. J Interferon Cytokine Res. 23:401–412. 2003. View Article : Google Scholar : PubMed/NCBI

22 

O’Neill LA and Bowie AG: Sensing and signaling in antiviral innate immunity. Curr Biol. 20:R328–R333. 2010.PubMed/NCBI

23 

Rathinam VA and Fitzgerald KA: Inflammasomes and anti-viral immunity. J Clin Immunol. 30:632–637. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Ciraci C, Janczy JR, Sutterwala FS and Cassel SL: Control of innate and adaptive immunity by the inflammasome. Microbes Infect. 14:1263–1270. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Mankan AK, Dau T, Jenne D and Hornung V: The NLRP3/ASC/Caspase-1 axis regulates IL-1beta processing in neutrophils. Eur J Immunol. 42:710–715. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Yamasaki K, Muto J, Taylor KR, Cogen AL, Audish D, Bertin J, Grant EP, Coyle AJ, Misaghi A, Hoffman HM and Gallo RL: NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem. 284:12762–12771. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ and Golenbock DT: The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 9:857–865. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Zhou R, Tardivel A, Thorens B, Choi I and Tschopp J: Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 11:136–140. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT and Tschopp J: Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 320:674–677. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA and Latz E: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 9:847–856. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA, Carter AB, Rothman PB, Flavell RA and Sutterwala FS: The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA. 105:9035–9040. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS and Flavell RA: Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 453:1122–1126. 2008. View Article : Google Scholar

33 

Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S and Beer HD: The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol. 17:1140–1145. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Bryant C and Fitzgerald KA: Molecular mechanisms involved in inflammasome activation. Trends Cell Biol. 19:455–464. 2009. View Article : Google Scholar : PubMed/NCBI

35 

McGettrick AF and O’Neill LA: NLRP3 and IL-1beta in macrophages as critical regulators of metabolic diseases. Diabetes Obes Metab. 15(Suppl 3): 19–25. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Lamkanfi M and Dixit VM: Inflammasomes: guardians of cytosolic sanctity. Immunol Rev. 227:95–105. 2009. View Article : Google Scholar : PubMed/NCBI

37 

McCall SH, Sahraei M, Young AB, Worley CS, Duncan JA, Ting JP and Marriott I: Osteoblasts express NLRP3, a nucleotide-binding domain and leucine-rich repeat region containing receptor implicated in bacterially induced cell death. J Bone Miner Res. 23:30–40. 2008. View Article : Google Scholar

38 

Duncan JA, Bergstralh DT, Wang Y, Willingham SB, Ye Z, Zimmermann AG and Ting JP: Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci USA. 104:8041–8046. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, Volkmann N, Hanein D, Rouiller I and Reed JC: Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell. 25:713–724. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z and Alnemri ES: The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem. 277:21119–21122. 2002. View Article : Google Scholar : PubMed/NCBI

41 

Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J and Reed JC: Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol. 171:6154–6163. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Bryan NB, Dorfleutner A, Kramer SJ, Yun C, Rojanasakul Y and Stehlik C: Differential splicing of the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC) regulates inflammasomes. J Inflamm (Lond). 7:232010. View Article : Google Scholar

43 

Bryan NB, Dorfleutner A, Rojanasakul Y and Stehlik C: Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J Immunol. 182:3173–3182. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Franchi L1, Eigenbrod T, Muñoz-Planillo R and Nuñez G: The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 10:241–247. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Martinon F and Tschopp J: Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 117:561–574. 2004. View Article : Google Scholar : PubMed/NCBI

46 

Arend WP, Palmer G and Gabay C: IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 223:20–38. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF and Kastelein RA: IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 23:479–490. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Cayrol C and Girard JP: The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci USA. 106:9021–9026. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Bae S, Kang T, Hong J, Lee S, Choi J, Jhun H, Kwak A, Hong K, Kim E, Jo S and Kim S: Contradictory functions (activation/termination) of neutrophil proteinase 3 enzyme (PR3) in interleukin-33 biological activity. J Biol Chem. 287:8205–8213. 2012. View Article : Google Scholar

50 

Lefrancais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard JP and Cayrol C: IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci USA. 109:1673–1678. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Shaw PJ, McDermott MF and Kanneganti TD: Inflammasomes and autoimmunity. Trends Mol Med. 17:57–64. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

July 2014
Volume 34 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xie, Q., Shen, W., Zhong, J., Huang, C., Zhang, L., & Li, J. (2014). Lipopolysaccharide/adenosine triphosphate induces IL‑1β and IL-18 secretion through the NLRP3 inflammasome in RAW264.7 murine macrophage cells. International Journal of Molecular Medicine, 34, 341-349. https://doi.org/10.3892/ijmm.2014.1755
MLA
Xie, Q., Shen, W., Zhong, J., Huang, C., Zhang, L., Li, J."Lipopolysaccharide/adenosine triphosphate induces IL‑1β and IL-18 secretion through the NLRP3 inflammasome in RAW264.7 murine macrophage cells". International Journal of Molecular Medicine 34.1 (2014): 341-349.
Chicago
Xie, Q., Shen, W., Zhong, J., Huang, C., Zhang, L., Li, J."Lipopolysaccharide/adenosine triphosphate induces IL‑1β and IL-18 secretion through the NLRP3 inflammasome in RAW264.7 murine macrophage cells". International Journal of Molecular Medicine 34, no. 1 (2014): 341-349. https://doi.org/10.3892/ijmm.2014.1755