Open Access

Simvastatin modulates cellular components in influenza A virus-infected cells

  • Authors:
    • Parvaneh Mehrbod
    • Mohd Hair-Bejo
    • Tengku Azmi Tengku Ibrahim
    • Abdul Rahman Omar
    • Mohamed El Zowalaty
    • Zahra Ajdari
    • Aini Ideris
  • View Affiliations

  • Published online on: April 28, 2014     https://doi.org/10.3892/ijmm.2014.1761
  • Pages: 61-73
  • Copyright: © Mehrbod et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Influenza A virus is one of the most important health risks that lead to significant respiratory infections. Continuous antigenic changes and lack of promising vaccines are the reasons for the unsuccessful treatment of influenza. Statins are pleiotropic drugs that have recently served as anti-influenza agents due to their anti-inflammatory activity. In this study, the effect of simvastatin on influenza A-infected cells was investigated. Based on the MTT cytotoxicity test, hemagglutination (HA) assay and qPCR it was found that simvastatin maintained cell viability and decreased the viral load significantly as compared to virus-inoculated cells. The expression of important pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interferon-γ), which was quantified using ELISA showed that simvastatin decreased the expression of pro-inflammatory cytokines to an average of 2-fold. Furthermore, the modulation of actin filament polymerization was determined using rhodamine staining. Endocytosis and autophagy processes were examined by detecting Rab and RhoA GTPase protein prenylation and LC3 lipidation using western blotting. The results showed that inhibiting GTPase and LC3 membrane localization using simvastatin inhibits influenza replication. Findings of this study provide evidence that modulation of RhoA, Rabs and LC3 may be the underlying mechanisms for the inhibitory effects of simvastatin as an anti-influenza compound.

References

1 

Cloutier A, Marois I, Cloutier D, Verreault C, Cantin AM and Richter MV: The prostanoid 15-deoxy-Δ12,14-prostaglandin-j2 reduces lung inflammation and protects mice against lethal influenza infection. J Infect Dis. 205:621–630. 2012.

2 

Fedson DS: Confronting an influenza pandemic with inexpensive generic agents: can it be done? Lancet Infect Dis. 8:571–576. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Calero M, Chen CZ, Zhu W, et al: Dual prenylation is required for Rab protein localization and function. Mol Biol Cell. 14:1852–1867. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Bright RA, Shay DK, Shu B, Cox NJ and Klimov AI: Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States. JAMA. 295:891–894. 2006.

5 

Hayden FG: Antiviral resistance in influenza viruses-implications for management and pandemic response. N Engl J Med. 354:785–788. 2006. View Article : Google Scholar

6 

Dharan NJ, Gubareva LV, Meyer JJ, et al: Infections with oseltamivir-resistant influenza A (H1N1) virus in the United States. JAMA. 301:1034–1041. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Fedson DS: Pandemic influenza: a potential role for statins in treatment and prophylaxis. Clin Infect Dis. 43:199–205. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Haidari M, Zhang W, Ganjehei L, Ali M and Chen Z: Inhibition of MLC phosphorylation restricts replication of influenza virus-A mechanism of action for anti-influenza agents. PLoS One. 6:e214442011. View Article : Google Scholar : PubMed/NCBI

9 

Whittaker GR: Intracellular trafficking of influenza virus: clinical implications for molecular medicine. Expert Rev Mol Med. 3:1–13. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Rothberg MB and Haessler SD: Complications of seasonal and pandemic influenza. Crit Care Med. 38(Suppl 4): e91–e97. 2010. View Article : Google Scholar : PubMed/NCBI

11 

de Jong MD, Simmons CP, Thanh TT, et al: Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 12:1203–1207. 2006.PubMed/NCBI

12 

Wilkins C and Gale M Jr: Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol. 22:41–47. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Uetani K, Hiroi M, Meguro T, et al: Influenza A virus abrogates IFN-gamma response in respiratory epithelial cells by disruption of the Jak/Stat pathway. Eur J Immunol. 38:1559–1573. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Osterholm MT: Preparing for the next pandemic. New Engl J Med. 352:1839–1842. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Darwish I, Mubareka S and Liles WC: Immunomodulatory therapy for severe influenza. Expert Rev Anti Infect Ther. 9:807–822. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Wang CY, Liu PY and Liao JK: Pleiotropic effects of statin therapy: molecular mechanisms and clinical results. Trends Mol Med. 14:37–44. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Fessler MB, Young SK, Jeyaseelan S, et al: A role for hydroxy-methylglutaryl coenzyme A reductase in pulmonary inflammation and host defense. Am J Respir Crit Care Med. 171:606–615. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Sun X and Whittaker GR: Role for influenza virus envelope cholesterol in virus entry and infection. J Virol. 77:12543–12551. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Cheng J, Ohsaki Y, Tauchi-Sato K, Fujita A and Fujimoto T: Cholesterol depletion induces autophagy. Biochem Biophys Res Commun. 351:246–252. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Terblanche M, Almog Y, Rosenson RS, Smith TS and Hackam DG: Statins and sepsis: multiple modifications at multiple levels. Lancet Infect Dis. 7:358–368. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Watts KL, Sampson EM, Schultz GS and Spiteri MA: Simvastatin inhibits growth factor expression and modulates profibrogenic markers in lung fibroblasts. Am J Respir Cell Mol Biol. 32:290–300. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Alexeeff SE, Litonjua AA, Sparrow D, Vokonas PS and Schwartz J: Statin use reduces decline in lung function: VA Normative Aging Study. Am J Respir Crit Care Med. 176:742–747. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Bohn W, Rutter G, Hohenberg H, Mannweiler K and Nobis P: Involvement of actin filaments in budding of measles virus: studies on cytoskeletons of infected cells. Virology. 149:91–106. 1986. View Article : Google Scholar : PubMed/NCBI

24 

Salas PJI, Misek DE, Vega-Salas DE, Gundersen D, Cereijido M and Rodriguez-Boulan E: Microtubules and actin filaments are not critically involved in the biogenesis of epithelial cell surface polarity. J Cell Biol. 102:1853–1867. 1986. View Article : Google Scholar : PubMed/NCBI

25 

Macejak DG and Luftig RB: Stabilization of actin filaments at early times after adenovirus infection and in heat-shocked cells. Virus Res. 19:31–46. 1991. View Article : Google Scholar : PubMed/NCBI

26 

Smythe E and Ayscough RK: Actin regulation in endocytosis. J Cell Sci. 119:4589–4598. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Winder SJ and Ayscough KR: Actin-binding proteins. J Cell Sci. 118:651–654. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Zhang W, Du L and Gunst SJ: The effects of the small GTPase RhoA on the muscarinic contraction of airway smooth muscle result from its role in regulating actin polymerization. Am J Physiol Cell Physiol. 299:C298–C306. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Wang J, Nikrad MP, Travanty EA, et al: Innate immune response of human alveolar macrophages during influenza A infection. PLoS One. 7:e298792012. View Article : Google Scholar : PubMed/NCBI

30 

Hall A: Rho GTPases and the control of cell behaviour. Biochem Soc Trans. 33:891–895. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Chen LM, Hobbie S and Galan JE: Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science. 274:2115–2118. 1996. View Article : Google Scholar : PubMed/NCBI

32 

Ellis S and Mellor H: The novel Rho-family GTPase rif regulates coordinated actin-based membrane rearrangements. Curr Biol. 10:1387–1390. 2000. View Article : Google Scholar : PubMed/NCBI

33 

Heusinger-Ribeiro J, Fischer B and Goppelt-Struebe M: Differential effects of simvastatin on mesangial cells. Kidney Int. 66:187–195. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Schaafsma D, McNeill KD, Mutawe MM, et al: Simvastatin inhibits TGFβ1-induced fibronectin in human airway fibroblasts. Respir Res. 12:1132011.

35 

Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D and Menzel D: Endocytosis, actin cytoskeleton and signaling. Plant Physiol. 135:1150–1161. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Griffiths G, Hoflack B, Simons K, Mellman I and Kornfeld S: The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell. 52:329–341. 1988. View Article : Google Scholar : PubMed/NCBI

37 

Pfeffer S: Membrane domains in the secretory and endocytic pathways. Cell. 112:507–517. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Matarrese P, Nencioni L, Checconi P, et al: Pepstatin A alters host cell autophagic machinery and leads to a decrease in influenza A virus production. J Cell Physiol. 226:3368–3377. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Sieczkarski SB and Whittaker GR: Dissecting virus entry via endocytosis. J Gen Virol. 83:1535–1545. 2002.PubMed/NCBI

40 

Sieczkarski SB and Whittaker GR: Differential requirements of Rab5 and Rab7 for endocytosis of influenza and other enveloped viruses. Traffic. 4:333–343. 2003. View Article : Google Scholar : PubMed/NCBI

41 

Mann SS and Hammarback JA: Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J Biol Chem. 269:11492–11497. 1994.PubMed/NCBI

42 

Ghavami S, Eshragi M, Ande SR, et al: S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res. 20:314–331. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Zhang Q, Yang YJ, Wang H, et al: Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev. 21:1321–1332. 2012. View Article : Google Scholar

44 

Noda T, Fujita N and Yoshimori T: The late stages of autophagy: how does the end begin? Cell Death Differ. 16:984–990. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Mehrbod P, Ideris A, Omar AR and Hair-Bejo M: Evaluation of antiviral effect of atorvastatin on H1N1 infection in MDCK cells. Afr J Mic Res. 6:5715–5719. 2012.

46 

Karber G: 50% endpoint calculation. Arch Exp Pathol Pharmacol. 162:480–483. 1931.

47 

Levi R, Beeor-Tzahar T and Arnon R: Microculture virus titration - a simple colourimetric assay for influenza virus titration. J Virol Methods. 52:55–64. 1995. View Article : Google Scholar : PubMed/NCBI

48 

Hirst GK: The agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus. Science. 94:22–23. 1941. View Article : Google Scholar : PubMed/NCBI

49 

Mehrbod P, Ideris A, Omar AR, et al: Attenuation of influenza virus infectivity with herbal-marine compound (HESA-A): an in vitro study in MDCK cells. Virol J. 9:442012. View Article : Google Scholar : PubMed/NCBI

50 

Godornes C, Leader BT, Molini BJ, Centurion-Lara A and Lukehart SA: Quantitation of rabbit cytokine mRNA by real-time RT-PCR. Cytokine. 38:1–7. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Khandaker G, Dierig A, Rashid H, King C, Heron L and Booy R: Systematic review of clinical and epidemiological features of the pandemic influenza A (H1N1) 2009. Influenza Other Respir Viruses. 5:148–156. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Damak H, Chtara K, Bahloul M, et al: Clinical features, complications and mortality in critically ill patients with 2009 influenza A (H1N1) in Sfax, Tunisia. Influenza Other Respir Viruses. 5:230–240. 2011.

53 

Brett SJ, Myles P, Lim WS, et al: Pre-admission statin use and in-hospital severity of 2009 pandemic influenza A (H1N1) disease. PLoS One. 6:e181202011. View Article : Google Scholar : PubMed/NCBI

54 

Kwong JC, Li P and Redelmeier DA: Influenza morbidity and mortality in elderly patients receiving statins: a cohort study. PLoS One. 4:e80872009. View Article : Google Scholar : PubMed/NCBI

55 

Kopterides P and Falagas ME: Statins for sepsis: a critical and updated review. Clin Microbiol Infect. 15:325–334. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Falagas ME, Makris GC, Matthaiou DK and Rafailidis PI: Statins for infection and sepsis: a systematic review of the clinical evidence. J Antimicrob Chemother. 61:774–785. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Vandermeer ML, Thomas AR, Kamimoto L, et al: Association between use of statins and mortality among patients hospitalized with laboratory-confirmed influenza virus infections: a multistate study. J Infect Dis. 205:13–19. 2012. View Article : Google Scholar

58 

Mehrbod P, El Zowalaty M, Omar AR, Hair-Bejo M and Ideris A: Statins reduce the expression of proinflammatory cytokines in influenza A virus infected CrFK cells. Acta Virol. 56:353–355. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Hall A: Rho GTPases and the actin cytoskeleton. Science. 279:509–514. 1998. View Article : Google Scholar

60 

Burridge K and Wennerberg K: Rho and Rac take center stage. Cell. 116:167–179. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Gad AKB and Aspenström P: Rif proteins take to the RhoD: Rho GTPases at the crossroads of actin dynamics and membrane trafficking. Cell Signal. 22:183–189. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Radtke K, Döhner K and Sodeik B: Viral interactions with the cytoskeleton: a hitchhiker’s guide to the cell. Cell Microbiol. 8:387–400. 2006.

63 

Kreijtz JH, Fouchier RA and Rimmelzwaan GF: Immune responses to influenza virus infection. Virus Res. 162:19–30. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Fenton RG, Kung HF, Longo DL and Smith MR: Regulation of intracellular actin polymerization by prenylated cellular proteins. J Cell Biol. 117:347–356. 1992. View Article : Google Scholar : PubMed/NCBI

65 

del Real G, Jiménez-Baranda S, Mira E, et al: Statins inhibit HIV-1 infection by down-regulating Rho activity. J Exp Med. 200:541–547. 2004.PubMed/NCBI

66 

Simon I, Zerial M and Goody RS: Kinetics of interaction of Rab5 and Rab7 with nucleotides and magnesium ions. J Biol Chem. 271:20470–20478. 1996. View Article : Google Scholar : PubMed/NCBI

67 

Amet T, Nonaka M, Dewan MZ, et al: Statin-induced inhibition of HIV-1 release from latently infected U1 cells reveals a critical role for protein prenylation in HIV-1 replication. Microbes Infect. 10:471–480. 2008. View Article : Google Scholar

68 

Procino G, Barbieri C, Carmosino M, et al: Fluvastatin modulates renal water reabsorption in vivo through increased AQP2 availability at the apical plasma membrane of collecting duct cells. Pflugers Arch. 462:753–766. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Rossman JS and Lamb RA: Autophagy, apoptosis and the influenza virus M2 protein. Cell Host Microbe. 6:299–300. 2009. View Article : Google Scholar : PubMed/NCBI

70 

Schmid D: Autophagy delivers viral antigens for MHC class II presentation and is regulated by viral infection. The Rockefeller University; 205. 2007

71 

Tanida I, Minematsu-Ikeguchi N, Ueno T and Kominami E: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy. 1:84–91. 2005. View Article : Google Scholar : PubMed/NCBI

72 

Wang S, Li H, Chen Y, et al: Transport of influenza virus neuraminidase (NA) to host cell surface is regulated by ARHGAP21 and Cdc42 proteins. J Biol Chem. 287:9804–9816. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Schmid D and Münz C: Innate and adaptive immunity through autophagy. Immunity. 27:11–21. 2007. View Article : Google Scholar

74 

Dai JP, Li WZ, Zhao XF, et al: A drug screening method based on the autophagy pathway and studies of the mechanism of evodiamine against influenza A virus. PLoS One. 7:e427062012. View Article : Google Scholar : PubMed/NCBI

75 

Ghavami S, Mutawe MM, Hauff K, et al: Statin-triggered cell death in primary human lung mesenchymal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c. Biochim Biophys Acta. 1803.452–467. 2010.PubMed/NCBI

76 

Klionsky DJ and Emr SD: Autophagy as a regulated pathway of cellular degradation. Science. 290:1717–1721. 2000. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

July 2014
Volume 34 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Mehrbod, P., Hair-Bejo, M., Tengku Ibrahim, T.A., Omar, A.R., El Zowalaty, M., Ajdari, Z., & Ideris, A. (2014). Simvastatin modulates cellular components in influenza A virus-infected cells. International Journal of Molecular Medicine, 34, 61-73. https://doi.org/10.3892/ijmm.2014.1761
MLA
Mehrbod, P., Hair-Bejo, M., Tengku Ibrahim, T. A., Omar, A. R., El Zowalaty, M., Ajdari, Z., Ideris, A."Simvastatin modulates cellular components in influenza A virus-infected cells". International Journal of Molecular Medicine 34.1 (2014): 61-73.
Chicago
Mehrbod, P., Hair-Bejo, M., Tengku Ibrahim, T. A., Omar, A. R., El Zowalaty, M., Ajdari, Z., Ideris, A."Simvastatin modulates cellular components in influenza A virus-infected cells". International Journal of Molecular Medicine 34, no. 1 (2014): 61-73. https://doi.org/10.3892/ijmm.2014.1761