Ovarian cancer stem cells induce the M2 polarization of macrophages through the PPARγ and NF-κB pathways

  • Authors:
    • Xinchao Deng
    • Ping Zhang
    • Tingting Liang
    • Suye Deng
    • Xiaojie Chen
    • Lin Zhu
  • View Affiliations

  • Published online on: May 29, 2015     https://doi.org/10.3892/ijmm.2015.2230
  • Pages: 449-454
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Increasing evidence suggests an association between cancer stem cells and the tumor microenvironment. Ovarian cancer stem cell (OCSC) factors can influence the tumor microenvironment and prognosis. However, the effects of OCSCs on macrophage M1/M2 polarization are not yet completely understood. In the present study, we evaluated the effects of OCSCs on macrophage M1/M2 polarization. In addition, we investigated whether the activation of the peroxisome proliferator-activated receptor γ (PPARγ)/nuclear factor-κB (NF-κB) pathway is involved in these effects, thus modulating the M1/M2 differentiation of monocytes into macrophages. The expression levels of markers of the M1 state, such as tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS) and CD86, as well as those of markers of M2 activation, such as mannose receptor (MR), interleukin (IL)-10 and arginase-1 (Arg-1), were measured by RT-qPCR. We found that the OCSCs promoted the M2 polarization of Raw264.7 macrophages by upregulating the expression of MR, IL-10 and Arg-1, while the expression levels of M1 macrophages markers, including TNF-α, iNOS and CD86 were suppressed. In addition, treatment with OCSCs activated PPARγ and suppressed NF-κB in the Raw264.7 cells. Furthermore, the PPARγ, antagonist GW9662, attenuated the promoting effects of OCSCs on the M2 polarization of macrophages. To the best of our knowledge, the findings of the present study, provide the first evidence that OCSCs promote the M2 polarization of macrophages through the PPARγ/NF-κB pathway.

References

1 

Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ, Xu X and Hamilton TC: Focus on epithelial ovarian cancer. Cancer Cell. 5:19–24. 2004. View Article : Google Scholar : PubMed/NCBI

2 

Clarke-Pearson DL: Clinical practice. Screening for ovarian cancer. N Engl J Med. 361:170–177. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Schwartz PE: Current diagnosis and treatment modalities for ovarian cancer. Cancer Treat Res. 107:99–118. 2002.PubMed/NCBI

4 

Ailles LE and Weissman IL: Cancer stem cells in solid tumors. Curr Opin Biotechnol. 18:460–466. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL and Wahl GM: Cancer stem cells - perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66:9339–9344. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH and Nephew KP: Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 68:4311–4320. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Bapat SA, Mali AM, Koppikar CB and Kurrey NK: Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 65:3025–3029. 2005.PubMed/NCBI

8 

Burleson KM, Casey RC, Skubitz KM, Pambuccian SE, Oegema TR Jr and Skubitz AP: Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and meso-thelial cell monolayers. Gynecol Oncol. 93:170–181. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Curley MD, Therrien VA, Cummings CL, et al: CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells. 27:2875–2883. 2009.PubMed/NCBI

10 

Wani AA, Sharma N, Shouche YS and Bapat SA: Nuclear-mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells. Oncogene. 25:6336–6344. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Steg AD, Bevis KS, Katre AA, Ziebarth A, Dobbin ZC, Alvarez RD, Zhang K, Conner M and Landen CN: Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res. 18:869–881. 2012. View Article : Google Scholar :

12 

Alvero AB, O’Malley D, Brown D, Kelly G, Garg M, Chen W, Rutherford T and Mor G: Molecular mechanism of phenoxodiol-induced apoptosis in ovarian carcinoma cells. Cancer. 106:599–608. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Alvero AB, Fu HH, Holmberg J, Visintin I, Mor L, Marquina CC, Oidtman J, Silasi DA and Mor G: Stem-like ovarian cancer cells can serve as tumor vascular progenitors. Stem Cells. 27:2405–2413. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Albini A, Cesana E and Noonan DM: Cancer stem cells and the tumor microenvironment: Soloists or choral singers. Curr Pharm Biotechnol. 12:171–181. 2011. View Article : Google Scholar

15 

Stockmann C, Schadendorf D, Klose R and Helfrich I: The impact of the immune system on tumor: Angiogenesis and vascular remodeling. Front Oncol. 4:692014. View Article : Google Scholar : PubMed/NCBI

16 

Chouaib S, Kieda C, Benlalam H, Noman MZ, Mami-Chouaib F and Rüegg C: Endothelial cells as key determinants of the tumor microenvironment: Interaction with tumor cells, extracellular matrix and immune killer cells. Crit Rev Immunol. 30:529–545. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Mantovani A and Sica A: Macrophages, innate immunity and cancer: Balance, tolerance, and diversity. Curr Opin Immunol. 22:231–237. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Ma W, Ma J, Xu J, Qiao C, Branscum A, Cardenas A, Baron AT, Schwartz P, Maihle NJ and Huang Y: Lin28 regulates BMP4 and functions with Oct4 to affect ovarian tumor microenvironment. Cell Cycle. 12:88–97. 2013. View Article : Google Scholar :

19 

Alvero AB, Chen R, Fu HH, et al: Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle. 8:158–166. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Alvaro T, de la Cruz-Merino L, Henao-Carrasco F, Villar Rodríguez JL, Vicente Baz D, Codes Manuel de Villena M and Provencio M: Tumor microenvironment and immune effects of antineoplastic therapy in lymphoproliferative syndromes. J Biomed Biotechnol. 2010:1–17. 2010. View Article : Google Scholar

21 

Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B and Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol. 18:767–811. 2000. View Article : Google Scholar : PubMed/NCBI

22 

Cretu A and Brooks PC: Impact of the non-cellular tumor micro-environment on metastasis: Potential therapeutic and imaging opportunities. J Cell Physiol. 213:391–402. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Oluwadara O, Giacomelli L, Brant X, Christensen R, Avezova R, Kossan G and Chiappelli F: The role of the microenvironment in tumor immune surveillance. Bioinformation. 5:285–290. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Piersma SJ: Immunosuppressive tumor microenvironment in cervical cancer patients. Cancer Microenviron. 4:361–375. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Sautès-Fridman C, Cherfils-Vicini J, Damotte D, Fisson S, Fridman WH, Cremer I and Dieu-Nosjean MC: Tumor micro-environment is multifaceted. Cancer Metastasis Rev. 30:13–25. 2011. View Article : Google Scholar

26 

Mantovani A, Schioppa T, Porta C, Allavena P and Sica A: Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 25:315–322. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Gordon S: Alternative activation of macrophages. Nat Rev Immunol. 3:23–35. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Mantovani A, Locati M, Vecchi A, Sozzani S and Allavena P: Decoy receptors: A strategy to regulate inflammatory cytokines and chemokines. Trends Immunol. 22:328–336. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Lewis CE and Pollard JW: Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66:605–612. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Porcheray F, Viaud S, Rimaniol AC, Léone C, Samah B, Dereuddre-Bosquet N, Dormont D and Gras G: Macrophage activation switching: An asset for the resolution of inflammation. Clin Exp Immunol. 142:481–489. 2005.PubMed/NCBI

31 

Murray PJ and Wynn TA: Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 11:723–737. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Gao S, Mao F, Zhang B, et al: Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-κB and signal transducer and activator of transcription 3 pathways. Exp Biol Med (Maywood). 239:366–375. 2014. View Article : Google Scholar

33 

Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC and Lehmann JM: A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell. 83:813–819. 1995. View Article : Google Scholar : PubMed/NCBI

34 

Willson TM, Brown PJ, Sternbach DD and Henke BR: The PPARs: From orphan receptors to drug discovery. J Med Chem. 43:527–550. 2000. View Article : Google Scholar : PubMed/NCBI

35 

Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, Fruchart JC, Chapman J, Najib J and Staels B: Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem. 273:25573–25580. 1998. View Article : Google Scholar : PubMed/NCBI

36 

Chinetti G, Fruchart JC and Staels B: Peroxisome proliferator-activated receptors: New targets for the pharmacological modulation of macrophage gene expression and function. Curr Opin Lipidol. 14:459–468. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Chinetti G, Fruchart JC and Staels B: Peroxisome proliferator-activated receptors (PPARs): Nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res. 49:497–505. 2000. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2015
Volume 36 Issue 2

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Deng, X., Zhang, P., Liang, T., Deng, S., Chen, X., & Zhu, L. (2015). Ovarian cancer stem cells induce the M2 polarization of macrophages through the PPARγ and NF-κB pathways. International Journal of Molecular Medicine, 36, 449-454. https://doi.org/10.3892/ijmm.2015.2230
MLA
Deng, X., Zhang, P., Liang, T., Deng, S., Chen, X., Zhu, L."Ovarian cancer stem cells induce the M2 polarization of macrophages through the PPARγ and NF-κB pathways". International Journal of Molecular Medicine 36.2 (2015): 449-454.
Chicago
Deng, X., Zhang, P., Liang, T., Deng, S., Chen, X., Zhu, L."Ovarian cancer stem cells induce the M2 polarization of macrophages through the PPARγ and NF-κB pathways". International Journal of Molecular Medicine 36, no. 2 (2015): 449-454. https://doi.org/10.3892/ijmm.2015.2230