MicroRNA-335 and -543 suppress bone metastasis in prostate cancer via targeting endothelial nitric oxide synthase

  • Authors:
    • Qizhong Fu
    • Xianfeng Liu
    • Ying Liu
    • Jianxun Yang
    • Guangyao Lv
    • Shengfang Dong
  • View Affiliations

  • Published online on: September 24, 2015     https://doi.org/10.3892/ijmm.2015.2355
  • Pages: 1417-1425
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Skeletal metastasis is the major problem in the management of prostate cancer (PCa). Even though the regulatory role of microRNAs (miRNAs) in the control of tumor metastases has been well described in numerous types of cancer, the importance in bone metastasis of PCa remains largely unknown. In the present study, the differentially expressed miRNAs were identified between the primary PCa and bone metastatic PCa samples by comparing their expression profiling using miRNA microarray, and 4 miRNAs (miR‑335, ‑543, ‑196 and ‑19a) were noted to be significantly downregulated in bone metastasis compared with primary PCa. Among those, the downregulation of 2 miRNAs (miR‑335 and ‑543) was confirmed in a total of 20 paired primary PCa and bone metastasis samples using reverse transcription‑quantitative polymerase chain reaction. Using the online target prediction tool, endothelial nitric oxide synthase (eNOS) was found to be a shared target of miR‑335 and ‑543, which was further verified using the luciferase assay. By examining the expression pattern of eNOS in primary PCa and skeletal metastatic samples, the mRNA and protein expression levels of eNOS were markedly upregulated in the metastatic samples. Furthermore, exogenous overexpression of miR‑335 and ‑543 significantly downregulated the expression level of eNOS, and substantially compromised the ability of migration and invasion in vitro. These findings suggested that miR‑335 and ‑543 are associated with bone metastasis of PCa and indicated that they may have important roles in the bone metastasis, which may also be clinically used as novel biomarkers in discriminating the different stages of human PCa and predicting bone metastasis.
View Figures
View References

Related Articles

Journal Cover

November-2015
Volume 36 Issue 5

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Fu Q, Liu X, Liu Y, Yang J, Lv G and Dong S: MicroRNA-335 and -543 suppress bone metastasis in prostate cancer via targeting endothelial nitric oxide synthase. Int J Mol Med 36: 1417-1425, 2015
APA
Fu, Q., Liu, X., Liu, Y., Yang, J., Lv, G., & Dong, S. (2015). MicroRNA-335 and -543 suppress bone metastasis in prostate cancer via targeting endothelial nitric oxide synthase. International Journal of Molecular Medicine, 36, 1417-1425. https://doi.org/10.3892/ijmm.2015.2355
MLA
Fu, Q., Liu, X., Liu, Y., Yang, J., Lv, G., Dong, S."MicroRNA-335 and -543 suppress bone metastasis in prostate cancer via targeting endothelial nitric oxide synthase". International Journal of Molecular Medicine 36.5 (2015): 1417-1425.
Chicago
Fu, Q., Liu, X., Liu, Y., Yang, J., Lv, G., Dong, S."MicroRNA-335 and -543 suppress bone metastasis in prostate cancer via targeting endothelial nitric oxide synthase". International Journal of Molecular Medicine 36, no. 5 (2015): 1417-1425. https://doi.org/10.3892/ijmm.2015.2355