Prohibitin-2 negatively regulates AKT2 expression to promote prostate cancer cell migration

  • Authors:
    • Yongmei Shen
    • Yu Gao
    • Hui Yuan
    • Jiasong Cao
    • Bona Jia
    • Mingming Li
    • Yanfei Peng
    • Xiaoling Du
    • Ju Zhang
    • Jiandang Shi
  • View Affiliations

  • Published online on: December 4, 2017     https://doi.org/10.3892/ijmm.2017.3307
  • Pages: 1147-1155
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Prostate cancer (PCa) is a leading cause of cancer‑associated mortality in men; however, the factors that contribute to disease development have yet to be fully elucidated. Previous studies have suggested that prohibitin-2 (PHB2), which is a multifunctional protein that contributes to various cellular processes, is positively correlated with malignant progression of PCa; however, the molecular mechanisms underlying the effects of PHB2 on the enhancement of cell migration have not been identified. The present study induced overexpression and knockdown of PHB2 in PCa cell lines (PC3 and DU145) with the aim of examining the effects of PHB2 on PCa cell migration via wound healing assays. The results indicated that PHB2 overexpression promoted migration of both cell lines. AKT serine/threonine kinase 2 (AKT2), which interacts with PHB2, has been reported to participate in cell migration; therefore, the present study examined the effects PHB2 overexpression and knockdown on AKT2 in PCa cells. The present study demonstrated that overexpression of PHB2 reduced the expression of AKT2, whereas PHB2 knockdown increased AKT2 expression in both PCa cell lines. In addition, knockdown of PHB2 enhanced the protein stability of AKT2. Furthermore, AKT2 overexpression resulted in a significant decrease in migration, whereas AKT2 knockdown promoted migration of PC3 and DU145 PCa cells. The combined overexpression of PHB2 and AKT2 inhibited migration of both cell lines, thus suggesting that AKT2 overexpression abolished PHB2-induced migration. Mechanistically, the present study suggested that PHB2 may promote PCa cell migration by inhibiting the expression of AKT2. These results provide information regarding the role of PHB2 in PCa migration and malignancy.

References

1 

Friedl P and Wolf K: Plasticity of cell migration: A multiscale tuning model. J Cell Biol. 188:11–19. 2010. View Article : Google Scholar :

2 

Martin NE, Mucci LA, Loda M and Depinho RA: Prognostic determinants in prostate cancer. Cancer J. 17:429–437. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Kim SH, Hwang KA, Shim SM and Choi KC: Growth and migration of LNCaP prostate cancer cells are promoted by triclosan and benzophenone-1 via an androgen receptor signaling pathway. Environ Toxicol Pharmacol. 39:568–576. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Yilmaz M and Christofori G: Mechanisms of motility in metastasizing cells. Mol Cancer Res. 8:629–642. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Thuaud F, Ribeiro N, Nebigil CG and Désaubry L: Prohibitin ligands in cell death and survival: Mode of action and therapeutic potential. Chem Biol. 20:316–331. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Kowno M, Watanabe-Susaki K, Ishimine H, Komazaki S, Enomoto K, Seki Y, Wang YY, Ishigaki Y, Ninomiya N, Noguchi TA, et al: Prohibitin 2 regulates the proliferation and lineage-specific differentiation of mouse embryonic stem cells in mitochondria. PLoS One. 9:e815522014. View Article : Google Scholar : PubMed/NCBI

8 

Yoshimaru T, Komatsu M, Matsuo T, Chen YA, Murakami Y, Mizuguchi K, Mizohata E, Inoue T, Akiyama M, Yamaguchi R, et al: Targeting BIG3-PHB2 interaction to overcome tamoxifen resistance in breast cancer cells. Nat Commun. 4:24432013. View Article : Google Scholar : PubMed/NCBI

9 

Chowdhury I, Garcia-Barrio M, Harp D, Thomas K, Matthews R and Thompson WE: The emerging roles of prohibitins in folliculogenesis. Front Biosci (Elite Ed). 4:690–699. 2012. View Article : Google Scholar

10 

Sievers C, Billig G, Gottschalk K and Rudel T: Prohibitins are required for cancer cell proliferation and adhesion. PLoS One. 5:e127352010. View Article : Google Scholar : PubMed/NCBI

11 

Yurugi H and Rajalingam K: A role for prohibitin in mast cell activation: Location matters. Sci Signal. 6:pe292013. View Article : Google Scholar : PubMed/NCBI

12 

Cheng J, Gao F, Chen X, Wu J, Xing C, Lv Z, Xu W, Xie Q, Wu L, Ye S, et al: Prohibitin-2 promotes hepatocellular carcinoma malignancy progression in hypoxia based on a label-free quantitative proteomics strategy. Mol Carcinog. 53:820–832. 2014. View Article : Google Scholar

13 

Pabona JM, Velarde MC, Zeng Z, Simmen FA and Simmen RC: Nuclear receptor co-regulator Krüppel-like factor 9 and prohibitin 2 expression in estrogen-induced epithelial cell proliferation in the mouse uterus. J Endocrinol. 200:63–73. 2009. View Article : Google Scholar

14 

Van Aken O, Whelan J and Van Breusegem F: Prohibitins: Mitochondrial partners in development and stress response. Trends Plant Sci. 15:275–282. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Polier G, Neumann J, Thuaud F, Ribeiro N, Gelhaus C, Schmidt H, Giaisi M, Köhler R, Müller WW, Proksch P, et al: The natural anticancer compounds rocaglamides inhibit the Raf-MEK-ERK pathway by targeting prohibitin 1 and 2. Chem Biol. 19:1093–1104. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Zhu B, Zhai J, Zhu H and Kyprianou N: Prohibitin regulates TGF-β induced apoptosis as a downstream effector of Smad-dependent and -independent signaling. Prostate. 70:17–26. 2010. View Article : Google Scholar

17 

Chen RX, Song HY, Dong YY, Hu C, Zheng QD, Xue TC, Liu XH, Zhang Y, Chen J, Ren ZG, et al: Dynamic expression patterns of differential proteins during early invasion of hepatocellular carcinoma. PLoS One. 9:e885432014. View Article : Google Scholar : PubMed/NCBI

18 

Fu P, Yang Z and Bach LA: Prohibitin-2 binding modulates insulin-like growth factor-binding protein-6 (IGFBP-6)-induced rhabdomyosarcoma cell migration. J Biol Chem. 288:29890–29900. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Vivanco I, Chen ZC, Tanos B, Oldrini B, Hsieh WY, Yannuzzi N, Campos C and Mellinghoff IK: A kinase-independent function of AKT promotes cancer cell survival. eLife. 3:e037512014. View Article : Google Scholar

20 

Kang W, Tong JHM, Lung RWM, Dong Y, Yang W, Pan Y, Lau KM, Yu J, Cheng AS and To KF: let-7b/g silencing activates AKT signaling to promote gastric carcinogenesis. J Transl Med. 12:2812014. View Article : Google Scholar : PubMed/NCBI

21 

Liang JW, Shi ZZ, Shen TY, Che X, Wang Z, Shi SS, Xu X, Cai Y, Zhao P, Wang CF, et al: Identification of genomic alterations in pancreatic cancer using array-based comparative genomic hybridization. PLoS One. 9:e1146162014. View Article : Google Scholar : PubMed/NCBI

22 

Chin YR, Yuan X, Balk SP and Toker A: PTEN-deficient tumors depend on AKT2 for maintenance and survival. Cancer Discov. 4:942–955. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Virtakoivu R, Pellinen T, Rantala JK, Perälä M and Ivaska J: Distinct roles of AKT isoforms in regulating β1-integrin activity, migration, and invasion in prostate cancer. Mol Biol Cell. 23:3357–3369. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Zhou GL, Tucker DF, Bae SS, Bhatheja K, Birnbaum MJ and Field J: Opposing roles for Akt1 and Akt2 in Rac/Pak signaling and cell migration. J Biol Chem. 281:36443–36453. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Fortier AM, Van Themsche C, Asselin E and Cadrin M: Akt isoforms regulate intermediate filament protein levels in epithelial carcinoma cells. FEBS Lett. 584:984–988. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Cariaga-Martinez AE, López-Ruiz P, Nombela-Blanco MP, Motiño O, González-Corpas A, Rodriguez-Ubreva J, Lobo MV, Cortés MA and Colás B: Distinct and specific roles of AKT1 and AKT2 in androgen-sensitive and androgen-independent prostate cancer cells. Cell Signal. 25:1586–1597. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Héron-Milhavet L, Mamaeva D, Rochat A, Lamb NJ and Fernandez A: Akt2 is implicated in skeletal muscle differentiation and specifically binds Prohibitin2/REA. J Cell Physiol. 214:158–165. 2008. View Article : Google Scholar

28 

Gardner S, Anguiano M and Rotwein P: Defining Akt actions in muscle differentiation. Am J Physiol Cell Physiol. 303:C1292–C1300. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Matheny RW Jr and Adamo ML: Effects of PI3K catalytic subunit and Akt isoform deficiency on mTOR and p70S6K activation in myoblasts. Biochem Biophys Res Commun. 390:252–257. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, et al: Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 9:166–180. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM: ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Zhang Z, Wang L, Mei M, Zhu Y, Du X, Lee C, Park I, Zhang J and Shi J: Both nongenomic and genomic effects are involved in estradiol's enhancing the phenotype of smooth muscle cells in cultured prostate stromal cells. Prostate. 70:317–332. 2010.

33 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar

34 

Héron-Milhavet L, Franckhauser C, Rana V, Berthenet C, Fisher D, Hemmings BA, Fernandez A and Lamb NJ: Only Akt1 is required for proliferation, while Akt2 promotes cell cycle exit through p21 binding. Mol Cell Biol. 26:8267–8280. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Yarrow JC, Perlman ZE, Westwood NJ and Mitchison TJ: A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol. 4:21. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Artal-Sanz M and Tavernarakis N: Prohibitin and mitochondrial biology. Trends Endocrinol Metab. 20:394–401. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Du XL, Yu L, Ning ZC, et al: Estrogen receptor inhibitor, REA, have an effect on proliferation and migration in prostate cancer cells. Acta Scientiarum Naturalium Universitatis Nankaiensis. 46:36–43. 2013.

38 

Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N, Natesan S and Brugge JS: Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol. 171:1023–1034. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Dillon RL, Marcotte R, Hennessy BT, Woodgett JR, Mills GB and Muller WJ: Akt1 and akt2 play distinct roles in the initiation and metastatic phases of mammary tumor progression. Cancer Res. 69:5057–5064. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, Frierson HF Jr and Hampton GM: Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 61:5974–5978. 2001.PubMed/NCBI

41 

Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D'Amico AV, Richie JP, et al: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 1:203–209. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, Ekman P, et al: Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA. 101:811–816. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, Shah RB, Chandran U, Monzon FA, Becich MJ, Wei JT, et al: Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell. 8:393–406. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Liu P, Ramachandran S, Ali Seyed M, Scharer CD, Laycock N, Dalton WB, Williams H, Karanam S, Datta MW, Jaye DL and Moreno CS: Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res. 66:4011–4019. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

February 2018
Volume 41 Issue 2

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Shen, Y., Gao, Y., Yuan, H., Cao, J., Jia, B., Li, M. ... Shi, J. (2018). Prohibitin-2 negatively regulates AKT2 expression to promote prostate cancer cell migration. International Journal of Molecular Medicine, 41, 1147-1155. https://doi.org/10.3892/ijmm.2017.3307
MLA
Shen, Y., Gao, Y., Yuan, H., Cao, J., Jia, B., Li, M., Peng, Y., Du, X., Zhang, J., Shi, J."Prohibitin-2 negatively regulates AKT2 expression to promote prostate cancer cell migration". International Journal of Molecular Medicine 41.2 (2018): 1147-1155.
Chicago
Shen, Y., Gao, Y., Yuan, H., Cao, J., Jia, B., Li, M., Peng, Y., Du, X., Zhang, J., Shi, J."Prohibitin-2 negatively regulates AKT2 expression to promote prostate cancer cell migration". International Journal of Molecular Medicine 41, no. 2 (2018): 1147-1155. https://doi.org/10.3892/ijmm.2017.3307