Melatonin inhibits epithelial‑to‑mesenchymal transition in gastric cancer cells via attenuation of IL‑1β/NF‑κB/MMP2/MMP9 signaling

  • Authors:
    • Xiaoting Wang
    • Bin Wang
    • Jieqiong Xie
    • Diyu Hou
    • Hui Zhang
    • Huifang Huang
  • View Affiliations

  • Published online on: July 19, 2018     https://doi.org/10.3892/ijmm.2018.3788
  • Pages: 2221-2228
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Although melatonin has been shown to exert marked antitumor effects against a variety of cancers, the underlying mechanisms remain to be fully elucidated. It has been hypothesized that the anticancer properties of melatonin are associated with its ability to suppress epithelial‑to‑mesenchymal transition (EMT) of cancer cells. In the present study, melatonin effectively suppressed interleukin (IL)‑1β‑induced EMT in human gastric adenocarcinoma (GA) cells. Sequential treatment of GA cells with melatonin after IL‑1β challenge markedly reversed the IL‑1β‑induced morphological changes, reduced cell invasion and migration, increased β‑catenin and E‑cadherin expression, and downregulated fibronectin, vimentin, Snail, matrix metalloproteinase (MMP)2 and MMP9 expression. Moreover, IL‑1β‑induced activation of NF‑κB was attenuated following treatment with melatonin. Knockdown of NF‑κB significantly reduced the IL‑1β‑induced EMT in GA cells. Taken together, these findings indicate that melatonin may act by suppressing EMT and tumor progression by inhibiting NF‑κB activity.

References

1 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Yoshida T, Ozawa Y, Kimura T, Sato Y, Kuznetsov G, Xu S, Uesugi M, Agoulnik S, Taylor N, Funahashi Y and Matsui J: Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET) states. Br J Cancer. 110:1497–1505. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, Wu CC, LeBleu VS and Kalluri R: Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 527:525–530. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Tungsukruthai S, Sritularak B and Chanvorachote P: Cycloartobiloxanthone inhibits migration and invasion of lung cancer cells. Anticancer Res. 37:6311–6319. 2017.PubMed/NCBI

5 

Jiménez-Garduño AM, Mendoza-Rodríguez MG, Urrutia-Cabrera D, Domínguez-Robles MC, Perez-Yepez EA, Ayala-Sumuano JT and Meza I: IL-1β induced methylation of the estrogen receptor ERalpha gene correlates with EMT and chemoresistance in breast cancer cells. Biochem Biophys Res Commun. 490:780–785. 2017. View Article : Google Scholar

6 

Wang J, Bao L, Yu B, Liu Z, Han W, Deng C and Guo C: Interleukin-1β promotes epithelial-derived alveolar elastogenesis via αvβ6 integrin-dependent TGF-β activation. Cell Physiol Biochem. 36:2198–216. 2015. View Article : Google Scholar

7 

Kim W, Jeong JW and Kim JE: CCAR2 deficiency augments genotoxic stress-induced apoptosis in the presence of melatonin in non-small cell lung cancer cells. Tumour Biol. 35:10919–10929. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Mao L, Yuan L, Xiang S, Zeringue SB, Dauchy RT, Blask DE, Hauch A and Hill SM: Molecular deficiency (ies) in MT1 melatonin signaling pathway underlies the melatonin-unresponsive phenotype in MDA-MB-231 human breast cancer cells. J Pineal Res. 56:246–253. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Pariente R, Bejarano I, Rodriguez AB, Pariente JA and Espino J: Melatonin increases the effect of 5-fluorouracil-based chemotherapy in human colorectal adenocarcinoma cells in vitro. Mol Cell Biochem. 440:43–51. 2018. View Article : Google Scholar

10 

Lissoni P: Biochemotherapy with standard chemotherapies plus the pineal hormone melatonin in the treatment of advanced solid neoplasms. Pathol Biol (Paris). 55:201–204. 2007. View Article : Google Scholar

11 

Martín-Renedo J, Mauriz JL, Jorquera F, Ruiz-Andrés O, González P and González-Gallego J: Melatonin induces cell cycle arrest and apoptosis in hepatocarcinoma HepG2 cell line. J Pineal Res. 45:532–540. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Korkmaz A, Tamura H, Manchester LC, Ogden GB, Tan DX and Reiter RJ: Combination of melatonin and a peroxisome proliferator-activated receptor-gamma agonist induces apoptosis in a breast cancer cell line. J Pineal Res. 46:115–116. 2009. View Article : Google Scholar

13 

Pizarro JG, Yeste-Velasco M, Esparza JL, Verdaguer E, Pallàs M, Camins A and Folch J: The antiproliferative activity of melatonin in B65 rat dopaminergic neuroblastoma cells is related to the downregulation of cell cycle-related genes. J Pineal Res. 45:8–16. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Zupancic D, Jezernik K and Vidmar G: Effect of melatonin on apoptosis, proliferation and differentiation of urothelial cells after cyclophosphamide treatment. J Pineal Res. 44:299–306. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Peng Z, Geh E, Chen L, Meng Q, Fan Y, Sartor M, Shertzer HG, Liu ZG, Puga A and Xia Y: Inhibitor of kappaB kinase beta regulates redox homeostasis by controlling the constitutive levels of glutathione. Mol Pharmacol. 77:784–792. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Kang H, Jang SW, Pak JH and Shim S: Glaucine inhibits breast cancer cell migration and invasion by inhibiting MMP-9 gene expression through the suppression of NF-kappaB activation. Mol Cell Biochemist. 403:85–94. 2015. View Article : Google Scholar

17 

Yang SS, Li XM, Yang M, Ren XL, Hu JL, Zhu XH, Wang FF, Zeng ZC, Li JY, Cheng ZQ, et al: FMNL2 destabilises COMMD10 to activate NF-κB pathway in invasion and metastasis of colorectal cancer. Br J Cancer. 117:1164–1175. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Krenn PW, Hofbauer SW, Pucher S, Hutterer E, Hinterseer E, Denk U, Asslaber D, Ganghammer S, Sternberg C, Neureiter D, et al: ILK induction in lymphoid organs by a TNFα-NF-κB-regulated pathway promotes the development of chronic lymphocytic leukemia. Cancer Res. 76:2186–2196. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Barham W, Chen L, Tikhomirov O, Onishko H, Gleaves L, Stricker TP, Blackwell TS and Yull FE: Aberrant activation of NF-κB signaling in mammary epithelium leads to abnormal growth and ductal carcinoma in situ. BMC Cancer. 15:6472015. View Article : Google Scholar

20 

Lu Z, Li Y, Wang J, Che Y, Sun S, Huang J, Chen Z and He J: Long non-coding RNA NKILA inhibits migration and invasion of non-small cell lung cancer via NF-κB/Snail pathway. J Exp Clin Cancer Res. 36:542017. View Article : Google Scholar

21 

Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S and Nakshatri H: NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: Potential involvement of ZEB-1 and ZEB-2. Oncogene. 26:711–724. 2007. View Article : Google Scholar

22 

Li W, Wu J, Li Z, Zhou Z, Zheng C, Lin L, Tan B, Huang M and Fan M: Melatonin induces cell apoptosis in Mia PaCa-2 cells via the suppression of nuclear factor-κB and activation of ERK and JNK: A novel therapeutic implication for pancreatic cancer. Oncol Rep. 36:2861–2867. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Huang Q, Lan F, Zheng Z, Xie F, Han J, Dong L, Xie Y and Zheng F: Akt2 kinase suppresses glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-mediated apoptosis in ovarian cancer cells via phosphorylating GAPDH at threonine 237 and decreasing its nuclear translocation. J Biol Chem. 286:42211–42220. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Van Tubergen EA, Banerjee R, Liu M, Vander Broek R, Light E, Kuo S, Feinberg SE, Willis AL, Wolf G, Carey T, et al: Inactivation or loss of TTP promotes invasion in head and neck cancer via transcript stabilization and secretion of MMP9, MMP2, and IL-6. Clin Cancer Res. 19:1169–1179. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Aggarwal BB: Nuclear factor-kappaB: The enemy within. Cancer Cell. 6:203–208. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Aggarwal BB, Vijayalekshmi RV and Sung B: Targeting inflammatory pathways for prevention and therapy of cancer: Short-term friend, long-term foe. Clin Cancer Res. 15:425–430. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Qin LX: Inflammatory immune responses in tumor microenvironment and metastasis of hepatocellular carcinoma. Cancer Microenviron. 5:203–209. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Leonardi GC, Candido S, Cervello M, Nicolosi D, Raiti F, Travali S, Spandidos DA and Libra M: The tumor microenvironment in hepatocellular carcinoma (Review). Int J Oncol. 40:1733–1747. 2012.PubMed/NCBI

29 

Tsai JH and Yang J: Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 27:2192–2206. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Soria G, Ofri-Shahak M, Haas I, Yaal-Hahoshen N, Leider-Trejo L, Leibovich-Rivkin T, Weitzenfeld P, Meshel T, Shabtai E, Gutman M and Ben-Baruch A: Inflammatory mediators in breast cancer: Coordinated expression of TNFα & IL-1β with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition. BMC Cancer. 11:1302011. View Article : Google Scholar

31 

Martin V, Sanchez-Sanchez AM, Puente-Moncada N, Gomez-Lobo M, Alvarez-Vega MA, Antolín I and Rodriguez C: Involvement of autophagy in melatonin-induced cytotoxicity in glioma-initiating cells. J Pineal Res. 57:308–316. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Kim TK, Lin Z, Tidwell WJ, Li W and Slominski AT: Melatonin and its metabolites accumulate in the human epidermis in vivo and inhibit proliferation and tyrosinase activity in epidermal melanocytes in vitro. Mol Cell Endocrinol. 404:1–8. 2015. View Article : Google Scholar :

33 

Pal S, Bhattacharjee A, Ali A, Mandal NC, Mandal SC and Pal M: Chronic inflammation and cancer: Potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J Inflamm (Lond). 11:232014. View Article : Google Scholar

Related Articles

Journal Cover

October 2018
Volume 42 Issue 4

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wang, X., Wang, B., Xie, J., Hou, D., Zhang, H., & Huang, H. (2018). Melatonin inhibits epithelial‑to‑mesenchymal transition in gastric cancer cells via attenuation of IL‑1β/NF‑κB/MMP2/MMP9 signaling. International Journal of Molecular Medicine, 42, 2221-2228. https://doi.org/10.3892/ijmm.2018.3788
MLA
Wang, X., Wang, B., Xie, J., Hou, D., Zhang, H., Huang, H."Melatonin inhibits epithelial‑to‑mesenchymal transition in gastric cancer cells via attenuation of IL‑1β/NF‑κB/MMP2/MMP9 signaling". International Journal of Molecular Medicine 42.4 (2018): 2221-2228.
Chicago
Wang, X., Wang, B., Xie, J., Hou, D., Zhang, H., Huang, H."Melatonin inhibits epithelial‑to‑mesenchymal transition in gastric cancer cells via attenuation of IL‑1β/NF‑κB/MMP2/MMP9 signaling". International Journal of Molecular Medicine 42, no. 4 (2018): 2221-2228. https://doi.org/10.3892/ijmm.2018.3788