Acquisition of Fas resistance by Fas receptor mutation in a childhood B-precursor acute lymphoblastic leukemia cell line, MML-1

  • Authors:
    • Hiroto Inaba
    • Keiji Shimada
    • Yan-Wen Zhou
    • Masaru Ido
    • Steven Buck
    • Shin Yonehara
    • Joseph Kaplan
    • Yoshihiro Komada
  • View Affiliations

  • Published online on: August 1, 2005     https://doi.org/10.3892/ijo.27.2.573
  • Pages: 573-579
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Programmed cell death, or apoptosis, is a physiological means of eliminating unwanted cells and maintaining immune homeostasis. One of the primary mechanisms is the Fas (CD95)/Fas ligand system. Its inactivation in normal cells and malignant cells may be involved in malignant trans-formation and refractory clinical course, respectively. We established a Fas resistant clone and evaluated the molecular basis for its mechanism of resistance. The Fas-sensitive leukemia cell line, MML-1, was established from a child with B-precursor acute lymphoblastic leukemia. A Fas resistant clone, MML-1R, was obtained by co-culture selection with anti-Fas antibody CH-11. Flow cytometry analysis showed both cell lines had equivalent expression of cell surface CD13, 15, 19, 22 and Fas receptor. Western blot analysis revealed equal expression of FADD (Fas-associated death domain protein), caspase-3 and -8. MML-1 was quite sensitive to both CH-11 and etoposide-induced apoptotis. By contrast, MML-1R had similar sensitivity to etoposide but no response to CH-11. Fas receptor mutation analysis showed a heterozygous death domain A↷G point mutation at 1009 bp, causing a switch from glutamine to glycine at amino acid 256. Immunoprecipitation assay showed decreased binding of Fas to FADD. We also found that etoposide bypassed Fas-FADD interaction in MML-1R by activating caspase-8 and caspase-3. These results indicate that Fas resistance can result from mutations of the gene encoding the Fas receptor which result in decreased FADD binding, thereby blocking formation of the death inducing signaling complex. Screening for similar Fas mutations in therapy resistant malignancies would lead to a better understanding of tumorigenesis and recurrence.

Related Articles

Journal Cover

August 2005
Volume 27 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Inaba H, Shimada K, Zhou Y, Ido M, Buck S, Yonehara S, Kaplan J and Komada Y: Acquisition of Fas resistance by Fas receptor mutation in a childhood B-precursor acute lymphoblastic leukemia cell line, MML-1. Int J Oncol 27: 573-579, 2005
APA
Inaba, H., Shimada, K., Zhou, Y., Ido, M., Buck, S., Yonehara, S. ... Komada, Y. (2005). Acquisition of Fas resistance by Fas receptor mutation in a childhood B-precursor acute lymphoblastic leukemia cell line, MML-1. International Journal of Oncology, 27, 573-579. https://doi.org/10.3892/ijo.27.2.573
MLA
Inaba, H., Shimada, K., Zhou, Y., Ido, M., Buck, S., Yonehara, S., Kaplan, J., Komada, Y."Acquisition of Fas resistance by Fas receptor mutation in a childhood B-precursor acute lymphoblastic leukemia cell line, MML-1". International Journal of Oncology 27.2 (2005): 573-579.
Chicago
Inaba, H., Shimada, K., Zhou, Y., Ido, M., Buck, S., Yonehara, S., Kaplan, J., Komada, Y."Acquisition of Fas resistance by Fas receptor mutation in a childhood B-precursor acute lymphoblastic leukemia cell line, MML-1". International Journal of Oncology 27, no. 2 (2005): 573-579. https://doi.org/10.3892/ijo.27.2.573