Cytochrome P450 17A1 inhibitor abiraterone attenuates cellular growth of prostate cancer cells independently from androgen receptor signaling by modulation of oncogenic and apoptotic pathways

  • Authors:
    • Hannah Grossebrummel
    • Tilmann Peter
    • Robert Mandelkow
    • Martin Weiss
    • Damian Muzzio
    • Uwe Zimmermann
    • Reinhard Walther
    • Federico Jensen
    • Cornelius Knabbe
    • Marek Zygmunt
    • Martin Burchardt
    • Matthias B. Stope
  • View Affiliations

  • Published online on: November 27, 2015     https://doi.org/10.3892/ijo.2015.3274
  • Pages: 793-800
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Abiraterone provides significant survival advantages in prostate cancer (PC), however, the current understanding of the molecular mechanisms of abiraterone is still limited. Therefore, the abiraterone impact on androgen receptor (AR)-positive LNCaP and AR-negative PC-3 cells was assessed by cellular and molecular analyses. The present study demonstrated, that abiraterone treatment significantly decreased cell growth, AR expression, and AR activity of AR-positive LNCaP cells. Notably, AR-negative PC-3 cells exhibited comparable reductions in cellular proliferation, associated with DNA fragmentation and pro-apoptotic modulation of p21, caspase-3, survivin, and transforming growth factor β (TGFβ). Our observations suggest that the attenuation of AR signaling is not the only rationale to explain the abiraterone anticancer activity. Abiraterone efficacy may play a more global role in PC progression control than originally hypothesized. In this regard, abiraterone is not only a promising drug for treatment of AR-negative PC stages, even more, abiraterone may represent an alternative for treatment of other malignancies besides prostate cancer.

References

1 

Labrie F, Luu-The V, Lin SX, Simard J, Labrie C, El-Alfy M, Pelletier G and Bélanger A: Intracrinology: Role of the family of 17 beta-hydroxysteroid dehydrogenases in human physiology and disease. J Mol Endocrinol. 25:1–16. 2000. View Article : Google Scholar : PubMed/NCBI

2 

Piao YS, Wiesenfeld P, Sprando R and Arnold JT: TGFβ1 alters androgenic metabolites and hydroxysteroid dehydrogenase enzyme expression in human prostate reactive stromal primary cells: Is steroid metabolism altered by prostate reactive stromal microenvironment? J Steroid Biochem Mol Biol. 138:206–213. 2013. View Article : Google Scholar : PubMed/NCBI

3 

de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr, Saad F, et al: COU-AA-301 Investigators: Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 364:1995–2005. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Miller WL: Steroidogenic enzymes. Disorders of the Human Adrenal Cortex. Flück CE and Miller WL: Karger; Basel: pp. 1–18. 2008, View Article : Google Scholar

5 

Yin L and Hu Q: CYP17 inhibitors - abiraterone, C17,20-lyase inhibitors and multi-targeting agents. Nat Rev Urol. 11:32–42. 2014. View Article : Google Scholar

6 

Pia A, Vignani F, Attard G, Tucci M, Bironzo P, Scagliotti G, Arlt W, Terzolo M and Berruti A: Strategies for managing ACTH dependent mineralocorticoid excess induced by abiraterone. Cancer Treat Rev. 39:966–973. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Richards J, Lim AC, Hay CW, Taylor AE, Wingate A, Nowakowska K, Pezaro C, Carreira S, Goodall J, Arlt W, et al: Interactions of abiraterone, eplerenone, and prednisolone with wild-type and mutant androgen receptor: A rationale for increasing abiraterone exposure or combining with MDV3100. Cancer Res. 72:2176–2182. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Harshman LC and Taplin ME: Abiraterone acetate: Targeting persistent androgen dependence in castration-resistant prostate cancer. Adv Ther. 30:727–747. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, Febbo PG and Balk SP: Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 66:2815–2825. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA, Marck B, Matsumoto AM, Simon NI, Wang H, et al: Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res. 71:6503–6513. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM, Nelson PS and Montgomery RB: Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: Induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res. 17:5913–5925. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. 1976. View Article : Google Scholar : PubMed/NCBI

13 

Small EJ, Baron AD, Fippin L and Apodaca D: Ketoconazole retains activity in advanced prostate cancer patients with progression despite flutamide withdrawal. J Urol. 157:1204–1207. 1997. View Article : Google Scholar : PubMed/NCBI

14 

Brossard D, Zhang Y, Haider SM, Sgobba M, Khalid M, Legay R, Duterque-Coquillaud M, Galera P, Rault S, Dallemagne P, et al: N-substituted piperazinopyridylsteroid derivatives as abiraterone analogues inhibit growth and induce pro-apoptosis in human hormone-independent prostate cancer cell lines. Chem Biol Drug Des. 82:620–629. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Soifer HS, Souleimanian N, Wu S, Voskresenskiy AM, Collak FK, Cinar B and Stein CA: Direct regulation of androgen receptor activity by potent CYP17 inhibitors in prostate cancer cells. J Biol Chem. 287:3777–3787. 2012. View Article : Google Scholar :

16 

Bruno RD, Gover TD, Burger AM, Brodie AM and Njar VC: 17alpha-Hydroxylase/17,20 lyase inhibitor VN/124-1 inhibits growth of androgen-independent prostate cancer cells via induction of the endoplasmic reticulum stress response. Mol Cancer Ther. 7:2828–2836. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Wong KK, Engelman JA and Cantley LC: Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev. 20:87–90. 2010. View Article : Google Scholar :

18 

Traish AM and Morgentaler A: Epidermal growth factor receptor expression escapes androgen regulation in prostate cancer: A potential molecular switch for tumour growth. Br J Cancer. 101:1949–1956. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Nakamura Y, McNamara K and Sasano H: Estrogen receptor expression and its relevant signaling pathway in prostate cancer: A target of therapy. Curr Mol Pharmacol. 5:392–400. 2012. View Article : Google Scholar

20 

Steiner MS and Barrack ER: Transforming growth factor-beta 1 overproduction in prostate cancer: Effects on growth in vivo and in vitro. Mol Endocrinol. 6:15–25. 1992.PubMed/NCBI

21 

Danielpour D: Functions and regulation of transforming growth factor-beta (TGF-beta) in the prostate. Eur J Cancer. 41:846–857. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Zhu B and Kyprianou N: Transforming growth factor beta and prostate cancer. Cancer Treat Res. 126:157–173. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Stope MB, Rönnau C, Schubert T, Staar D, Bradl J, Ziegler P, Streitbörger A, Kroeger N, Zimmermann U, Walther R, et al: Transforming growth factor β in prostate cancer: Cellular effects and basic molecular mechanisms. Urologe A. 52:378–383. 2013.(In German). View Article : Google Scholar

24 

Shariat SF, Kattan MW, Traxel E, Andrews B, Zhu K, Wheeler TM and Slawin KM: Association of pre- and postoperative plasma levels of transforming growth factor beta(1) and interleukin 6 and its soluble receptor with prostate cancer progression. Clin Cancer Res. 10:1992–1999. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Carroll AG, Voeller HJ, Sugars L and Gelmann EP: p53 oncogene mutations in three human prostate cancer cell lines. Prostate. 23:123–134. 1993. View Article : Google Scholar : PubMed/NCBI

26 

van Bokhoven A, Varella-Garcia M, Korch C, Johannes WU, Smith EE, Miller HL, Nordeen SK, Miller GJ, Lucia MS and Bokhoven van A: Molecular characterization of human prostate carcinoma cell lines. Prostate. 57:205–225. 2003. View Article : Google Scholar : PubMed/NCBI

27 

Coxon JP, Oades GM, Kirby RS and Colston KW: Zoledronic acid induces apoptosis and inhibits adhesion to mineralized matrix in prostate cancer cells via inhibition of protein prenylation. BJU Int. 94:164–170. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Huang F, Yang Z, Yu D, Wang J, Li R and Ding G: Sepia ink oligopeptide induces apoptosis in prostate cancer cell lines via caspase-3 activation and elevation of Bax/Bcl-2 ratio. Mar Drugs. 10:2153–2165. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Raja Singh P, Arunkumar R, Sivakamasundari V, Sharmila G, Elumalai P, Suganthapriya E, Brindha Mercy A, Senthilkumar K and Arunakaran J: Anti-proliferative and apoptosis inducing effect of nimbolide by altering molecules involved in apoptosis and IGF signalling via PI3K/Akt in prostate cancer (PC-3) cell line. Cell Biochem Funct. 32:217–228. 2014. View Article : Google Scholar

30 

Muenchen HJ, Poncza PJ and Pienta KJ: Different docetaxel-induced apoptotic pathways are present in prostate cancer cell lines LNCaP and PC-3. Urology. 57:366–370. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Fares M, Abou-Seri SM, Abdel-Aziz HA, Abbas SE, Youssef MM and Eladwy RA: Synthesis and antitumor activity of pyrido [2,3-d]pyrimidine and pyrido[2,3-d] [1,2,4]triazolo[4,3-a] pyrimidine derivatives that induce apoptosis through G1 cell-cycle arrest. Eur J Med Chem. 83:155–166. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Hsu JL, Liu SP, Lee CC, Hsu LC, Ho YF, Huang HS and Guh JH: A unique amidoanthraquinone derivative displays antiproliferative activity against human hormone-refractory metastatic prostate cancers through activation of LKB1-AMPK-mTOR signaling pathway. Naunyn Schmiedebergs Arch Pharmacol. 387:979–990. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Weiss M, Gümbel D, Hanschmann EM, Mandelkow R, Gelbrich N, Zimmermann U, Walther R, Ekkernkamp A, Sckell A, Kramer A, et al: Cold atmospheric plasma treatment induces anti-proliferative effects in prostate cancer cells by redox and apoptotic signaling pathways. PLoS One. 10:e01303502015. View Article : Google Scholar : PubMed/NCBI

34 

Erler JT, Cawthorne CJ, Williams KJ, Koritzinsky M, Wouters BG, Wilson C, Miller C, Demonacos C, Stratford IJ and Dive C: Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol. 24:2875–2889. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Zhang H, Sun L, Xiao X, Xie R, Liu C, Wang Y, Wei Y, Zhang H and Liu L: Krüppel-like factor 8 contributes to hypoxia-induced multidrug resistance in gastric cancer cells. Cancer Sci. 105:1109–1115. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

February 2016
Volume 48 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Grossebrummel, H., Peter, T., Mandelkow, R., Weiss, M., Muzzio, D., Zimmermann, U. ... Stope, M.B. (2016). Cytochrome P450 17A1 inhibitor abiraterone attenuates cellular growth of prostate cancer cells independently from androgen receptor signaling by modulation of oncogenic and apoptotic pathways. International Journal of Oncology, 48, 793-800. https://doi.org/10.3892/ijo.2015.3274
MLA
Grossebrummel, H., Peter, T., Mandelkow, R., Weiss, M., Muzzio, D., Zimmermann, U., Walther, R., Jensen, F., Knabbe, C., Zygmunt, M., Burchardt, M., Stope, M. B."Cytochrome P450 17A1 inhibitor abiraterone attenuates cellular growth of prostate cancer cells independently from androgen receptor signaling by modulation of oncogenic and apoptotic pathways". International Journal of Oncology 48.2 (2016): 793-800.
Chicago
Grossebrummel, H., Peter, T., Mandelkow, R., Weiss, M., Muzzio, D., Zimmermann, U., Walther, R., Jensen, F., Knabbe, C., Zygmunt, M., Burchardt, M., Stope, M. B."Cytochrome P450 17A1 inhibitor abiraterone attenuates cellular growth of prostate cancer cells independently from androgen receptor signaling by modulation of oncogenic and apoptotic pathways". International Journal of Oncology 48, no. 2 (2016): 793-800. https://doi.org/10.3892/ijo.2015.3274