Open Access

PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled ZEGFR:2377 affibody molecules

  • Authors:
    • Javad Garousi
    • Ken G. Andersson
    • Bogdan Mitran
    • Marie-Louise Pichl
    • Stefan Ståhl
    • Anna Orlova
    • John Löfblom
    • Vladimir Tolmachev
  • View Affiliations

  • Published online on: February 2, 2016     https://doi.org/10.3892/ijo.2016.3369
  • Pages: 1325-1332
  • Copyright: © Garousi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor, which is overexpressed in many types of cancer. The use of EGFR-targeting monoclonal antibodies and tyrosine-kinase inhibitors improves significantly survival of patients with colorectal, non-small cell lung cancer and head and neck squamous cell carcinoma. Detection of EGFR overexpression provides important prognostic and predictive information influencing management of the patients. The use of radionuclide molecular imaging would enable non-invasive repeatable determination of EGFR expression in disseminated cancer. Moreover, positron emission tomography (PET) would provide superior sensitivity and quantitation accuracy in EGFR expression imaging. Affibody molecules are a new type of imaging probes, providing high contrast in molecular imaging. In the present study, an EGFR-binding affibody molecule (ZEGFR:2377) was site-specifically conjugated with a deferoxamine (DFO) chelator and labelled under mild conditions (room temperature and neutral pH) with a positron-emitting radionuclide 89Zr. The 89Zr-DFO-ZEGFR:2377 tracer demonstrated specific high affinity (160±60 pM) binding to EGFR-expressing A431 epidermoid carcinoma cell line. In mice bearing A431 xenografts, 89Zr-DFO-ZEGFR:2377 demonstrated specific uptake in tumours and EGFR-expressing tissues. The tracer provided tumour uptake of 2.6±0.5% ID/g and tumour-to-blood ratio of 3.7±0.6 at 24 h after injection. 89Zr-DFO-ZEGFR:2377 provides higher tumour-to-organ ratios than anti-EGFR antibody 89Zr-DFO-cetuximab at 48 h after injection. EGFR‑expressing tumours were clearly visualized by microPET using 89Zr-DFO-ZEGFR:2377 at both 3 and 24 h after injection. In conclusion, 89Zr-DFO-ZEGFR:2377 is a potential probe for PET imaging of EGFR-expression in vivo.

References

1 

Mendelsohn J and Baselga J: Epidermal growth factor receptor targeting in cancer. Semin Oncol. 33:369–385. 2006. View Article : Google Scholar : PubMed/NCBI

2 

Scaltriti M and Baselga J: The epidermal growth factor receptor pathway: A model for targeted therapy. Clin Cancer Res. 12:5268–5272. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Goffin JR and Zbuk K: Epidermal growth factor receptor: Pathway, therapies, and pipeline. Clin Ther. 35:1282–1303. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Ang KK, Andratschke NH and Milas L: Epidermal growth factor receptor and response of head-and-neck carcinoma to therapy. Int J Radiat Oncol Biol Phys. 58:959–965. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Tsutsui S, Kataoka A, Ohno S, Murakami S, Kinoshita J and Hachitanda Y: Prognostic and predictive value of epidermal growth factor receptor in recurrent breast cancer. Clin Cancer Res. 8:3454–3460. 2002.PubMed/NCBI

6 

Selvaggi G, Novello S, Torri V, Leonardo E, De Giuli P, Borasio P, Mossetti C, Ardissone F, Lausi P and Scagliotti GV: Epidermal growth factor receptor overexpression correlates with a poor prognosis in completely resected non-small-cell lung cancer. Ann Oncol. 15:28–32. 2004. View Article : Google Scholar

7 

Humbert O, Riedinger JM, Charon-Barra C, Berriolo-Riedinger A, Desmoulins I, Lorgis V, Kanoun S, Coutant C, Fumoleau P, Cochet A and Brunotte F: Identification of biomarkers including 18FDG-PET/CT for early prediction of response to neoadjuvant chemotherapy in triple negative breast cancer. Clin Cancer Res. 21:5460–5468. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Ang KK, Berkey BA, Tu X, Zhang HZ, Katz R, Hammond EH, Fu KK and Milas L: Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 62:7350–7356. 2002.PubMed/NCBI

9 

Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, Haney J, Witta S, Danenberg K, Domenichini I, et al: Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 97:643–655. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Hirsch FR, Varella-Garcia M, Bunn PA Jr, Franklin WA, Dziadziuszko R, Thatcher N, Chang A, Parikh P, Pereira JR, Ciuleanu T, et al: Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J Clin Oncol. 24:5034–5042. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Pirker R, Pereira JR, von Pawel J, Krzakowski M, Ramlau R, Park K, de Marinis F, Eberhardt WE, Paz-Ares L, Störkel S, et al: EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: Analysis of data from the phase 3 FLEX study. Lancet Oncol. 13:33–42. 2012. View Article : Google Scholar

12 

Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, Bogart J, Hu C, Forster K, Magliocco A, et al: Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): A randomised, two-by-two factorial phase 3 study. Lancet Oncol. 16:187–199. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Bentzen SM, Atasoy BM, Daley FM, Dische S, Richman PI, Saunders MI, Trott KR and Wilson GD: Epidermal growth factor receptor expression in pretreatment biopsies from head and neck squamous cell carcinoma as a predictive factor for a benefit from accelerated radiation therapy in a randomized controlled trial. J Clin Oncol. 23:5560–5567. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Vignot S, Besse B, André F, Spano JP and Soria JC: Discrepancies between primary tumor and metastasis: A literature review on clinically established biomarkers. Crit Rev Oncol Hematol. 84:301–313. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Yarom N, Marginean C, Moyana T, Gorn-Hondermann I, Birnboim HC, Marginean H, Auer RC, Vickers M, Asmis TR, Maroun J, et al: EGFR expression variance in paired colorectal cancer primary and metastatic tumors. Cancer Biol Ther. 10:416–421. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Wei Q, Shui Y, Zheng S, Wester K, Nordgren H, Nygren P, Glimelius B and Carlsson J: EGFR, HER2 and HER3 expression in primary colorectal carcinomas and corresponding metastases: Implications for targeted radionuclide therapy. Oncol Rep. 25:3–11. 2011.

17 

Gomez-Roca C, Raynaud CM, Penault-Llorca F, Mercier O, Commo F, Morat L, Sabatier L, Dartevelle P, Taranchon E, Besse B, et al: Differential expression of biomarkers in primary non-small cell lung cancer and metastatic sites. J Thorac Oncol. 4:1212–1220. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Italiano A, Vandenbos FB, Otto J, Mouroux J, Fontaine D, Marcy PY, Cardot N, Thyss A and Pedeutour F: Comparison of the epidermal growth factor receptor gene and protein in primary non-small-cell-lung cancer and metastatic sites: Implications for treatment with EGFR-inhibitors. Ann Oncol. 17:981–985. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Goldenberg A, Masui H, Divgi C, Kamrath H, Pentlow K and Mendelsohn J: Imaging of human tumor xenografts with an indium-111-labeled anti-epidermal growth factor receptor monoclonal antibody. J Natl Cancer Inst. 81:1616–1625. 1989. View Article : Google Scholar : PubMed/NCBI

20 

Divgi CR, Welt S, Kris M, Real FX, Yeh SD, Gralla R, Merchant B, Schweighart S, Unger M, Larson SM, et al: Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst. 83:97–104. 1991. View Article : Google Scholar : PubMed/NCBI

21 

Cai W, Chen K, He L, Cao Q, Koong A and Chen X: Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging. 34:850–858. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Ping Li W, Meyer LA, Capretto DA, Sherman CD and Anderson CJ: Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors. Cancer Biother Radiopharm. 23:158–171. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Nayak TK, Garmestani K, Baidoo KE, Milenic DE and Brechbiel MW: Preparation, biological evaluation, and pharmacokinetics of the human anti-HER1 monoclonal antibody panitumumab labeled with 86Y for quantitative PET of carcinoma. J Nucl Med. 51:942–950. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Nayak TK, Garmestani K, Milenic DE and Brechbiel MW: PET and MRI of metastatic peritoneal and pulmonary colorectal cancer in mice with human epidermal growth factor receptor 1-targeted 89Zr-labeled panitumumab. J Nucl Med. 53:113–120. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Aerts HJ, Dubois L, Perk L, Vermaelen P, van Dongen GA, Wouters BG and Lambin P: Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J Nucl Med. 50:123–131. 2009. View Article : Google Scholar

26 

Chang AJ, De Silva RA and Lapi SE: Development and characterization of 89Zr-labeled panitumumab for immuno-positron emission tomographic imaging of the epidermal growth factor receptor. Mol Imaging. 12:17–27. 2013.PubMed/NCBI

27 

Cuartero-Plaza A, Martínez-Miralles E, Rosell R, Vadell-Nadal C, Farré M and Real FX: Radiolocalization of squamous lung carcinoma with 131I-labeled epidermal growth factor. Clin Cancer Res. 2:13–20. 1996.PubMed/NCBI

28 

Reilly RM, Kiarash R, Sandhu J, Lee YW, Cameron RG, Hendler A, Vallis K and Gariépy J: A comparison of EGF and MAb 528 labeled with 111In for imaging human breast cancer. J Nucl Med. 41:903–911. 2000.PubMed/NCBI

29 

Velikyan I, Sundberg AL, Lindhe O, Höglund AU, Eriksson O, Werner E, Carlsson J, Bergström M, Långström B and Tolmachev V: Preparation and evaluation of 68Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumors. J Nucl Med. 46:1881–1888. 2005.PubMed/NCBI

30 

Li W, Niu G, Lang L, Guo N, Ma Y, Kiesewetter DO, Backer JM, Shen B and Chen X: PET imaging of EGF receptors using [18F] FBEM-EGF in a head and neck squamous cell carcinoma model. Eur J Nucl Med Mol Imaging. 39:300–308. 2012. View Article : Google Scholar :

31 

Löfblom J, Feldwisch J, Tolmachev V, Carlsson J, Ståhl S and Frejd FY: Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 584:2670–2680. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Nygren PA: Alternative binding proteins: Affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J. 275:2668–2676. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Ahlgren S and Tolmachev V: Radionuclide molecular imaging using Affibody molecules. Curr Pharm Biotechnol. 11:581–589. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Feldwisch J and Tolmachev V: Engineering of affibody molecules for therapy and diagnostics. Methods Mol Biol. 899:103–126. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Sörensen J, Sandberg D, Sandström M, Wennborg A, Feldwisch J, Tolmachev V, Åström G, Lubberink M, Garske-Román U, Carlsson J, et al: First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J Nucl Med. 55:730–735. 2014. View Article : Google Scholar

36 

Friedman M, Orlova A, Johansson E, Eriksson TL, Höidén-Guthenberg I, Tolmachev V, Nilsson FY and Ståhl S: Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule. J Mol Biol. 376:1388–1402. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Tolmachev V, Friedman M, Sandström M, Eriksson TL, Rosik D, Hodik M, Ståhl S, Frejd FY and Orlova A: Affibody molecules for epidermal growth factor receptor targeting in vivo: Aspects of dimerization and labeling chemistry. J Nucl Med. 50:274–283. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Tolmachev V, Rosik D, Wållberg H, Sjöberg A, Sandström M, Hansson M, Wennborg A and Orlova A: Imaging of EGFR expression in murine xenografts using site-specifically labelled anti-EGFR 111In-DOTA-ZEGFR:2377 Affibody molecule: aspect of the injected tracer amount. Eur J Nucl Med Mol Imaging. 37:613–622. 2010. View Article : Google Scholar

39 

Vosjan MJ, Perk LR, Visser GW, Budde M, Jurek P, Kiefer GE and van Dongen GA: Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat Protoc. 5:739–743. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Malmberg J, Tolmachev V and Orlova A: Imaging agents for in vivo molecular profiling of disseminated prostate cancer--targeting EGFR receptors in prostate cancer: comparison of cellular processing of [111In]-labeled affibody molecule ZEGFR:2377 and cetuximab. Int J Oncol. 38:1137–1143. 2011.PubMed/NCBI

41 

Barta P, Malmberg J, Melicharova L, Strandgård J, Orlova A, Tolmachev V, Laznicek M and Andersson K: Protein interactions with HER-family receptors can have different characteristics depending on the hosting cell line. Int J Oncol. 40:1677–1682. 2012.

42 

Tolmachev V and Stone-Elander S: Radiolabelled proteins for positron emission tomography: Pros and cons of labelling methods. Biochim Biophys Acta. 1800.487–510. 2010.

43 

Altai M, Strand J, Rosik D, Selvaraju RK, Eriksson Karlström A, Orlova A and Tolmachev V: Influence of nuclides and chelators on imaging using affibody molecules: Comparative evaluation of recombinant affibody molecules site-specifically labeled with 68Ga and 111In via maleimido derivatives of DOTA and NODAGA. Bioconjug Chem. 24:1102–1109. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Heskamp S, Laverman P, Rosik D, Boschetti F, van der Graaf WT, Oyen WJ, van Laarhoven HW, Tolmachev V and Boerman OC: Imaging of human epidermal growth factor receptor type 2 expression with 18F-labeled affibody molecule ZHER2:2395 in a mouse model for ovarian cancer. J Nucl Med. 53:146–153. 2012. View Article : Google Scholar

45 

Strand J, Varasteh Z, Eriksson O, Abrahmsen L, Orlova A and Tolmachev V: Gallium-68-labeled affibody molecule for PET imaging of PDGFRβ expression in vivo. Mol Pharm. 11(3): 957–3964. 2014. View Article : Google Scholar

46 

Miao Z, Ren G, Liu H, Qi S, Wu S and Cheng Z: PET of EGFR expression with an 18F-labeled affibody molecule. J Nucl Med. 53:1110–1118. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Su X, Cheng K, Jeon J, Shen B, Venturin GT, Hu X, Rao J, Chin FT, Wu H and Cheng Z: Comparison of two site-specifically 18F-labeled affibodies for PET imaging of EGFR positive tumors. Mol Pharm. 11:3947–3956. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Dijkers EC, Kosterink JG, Rademaker AP, Perk LR, van Dongen GA, Bart J, de Jong JR, de Vries EG and Lub-de Hooge MN: Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J Nucl Med. 50:974–981. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Terwisscha van Scheltinga AG, Lub-de Hooge MN, Abiraj K, Schröder CP, Pot L, Bossenmaier B, Thomas M, Hölzlwimmer G, Friess T, Kosterink JG, et al: ImmunoPET and biodistribution with human epidermal growth factor receptor 3 targeting antibody 89Zr-RG7116. MAbs. 6:1051–1058. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, de Jong JR, van Dongen GA, Schröder CP, Lub-de Hooge MN and de Vries EG: Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 87:586–592. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Oosting SF, Brouwers AH, van Es SC, Nagengast WB, Oude Munnink TH, Lub-de Hooge MN, Hollema H, de Jong JR, de Jong IJ, de Haas S, et al: 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment. J Nucl Med. 56:63–69. 2015. View Article : Google Scholar

52 

Fischer G, Seibold U, Schirrmacher R, Wängler B and Wängler C: 89Zr, a radiometal nuclide with high potential for molecular imaging with PET: Chemistry, applications and remaining challenges. Molecules. 18:6469–6490. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Vegt E, de Jong M, Wetzels JF, Masereeuw R, Melis M, Oyen WJ, Gotthardt M and Boerman OC: Renal toxicity of radiolabeled peptides and antibody fragments: Mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 51:1049–1058. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Ahlgren S, Orlova A, Wållberg H, Hansson M, Sandström M, Lewsley R, Wennborg A, Abrahmsén L, Tolmachev V and Feldwisch J: Targeting of HER2-expressing tumors using 111In-ABY-025, a second-generation affibody molecule with a fundamentally reengineered scaffold. J Nucl Med. 51:1131–1138. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2016
Volume 48 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Garousi, J., Andersson, K.G., Mitran, B., Pichl, M., Ståhl, S., Orlova, A. ... Tolmachev, V. (2016). PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled ZEGFR:2377 affibody molecules. International Journal of Oncology, 48, 1325-1332. https://doi.org/10.3892/ijo.2016.3369
MLA
Garousi, J., Andersson, K. G., Mitran, B., Pichl, M., Ståhl, S., Orlova, A., Löfblom, J., Tolmachev, V."PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled ZEGFR:2377 affibody molecules". International Journal of Oncology 48.4 (2016): 1325-1332.
Chicago
Garousi, J., Andersson, K. G., Mitran, B., Pichl, M., Ståhl, S., Orlova, A., Löfblom, J., Tolmachev, V."PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled ZEGFR:2377 affibody molecules". International Journal of Oncology 48, no. 4 (2016): 1325-1332. https://doi.org/10.3892/ijo.2016.3369