Suppression of lysyl-tRNA synthetase, KRS, causes incomplete epithelial-mesenchymal transition and ineffective cell‑extracellular matrix adhesion for migration

  • Authors:
    • Seo Hee Nam
    • Minkyung Kang
    • Jihye Ryu
    • Hye-Jin Kim
    • Doyeun Kim
    • Dae Gyu Kim
    • Nam Hoon Kwon
    • Sunghoon Kim
    • Jung Weon Lee
  • View Affiliations

  • Published online on: February 8, 2016     https://doi.org/10.3892/ijo.2016.3381
  • Pages: 1553-1560
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The cell-adhesion properties of cancer cells can be targeted to block cancer metastasis. Although cytosolic lysyl-tRNA synthetase (KRS) functions in protein synthesis, KRS on the plasma membrane is involved in cancer metastasis. We hypothesized that KRS is involved in cell adhesion-related signal transduction for cellular migration. To test this hypothesis, colon cancer cells with modulated KRS protein levels were analyzed for cell-cell contact and cell-substrate adhesion properties and cellular behavior. Although KRS suppression decreased expression of cell-cell adhesion molecules, cells still formed colonies without being scattered, supporting an incomplete epithelial mesenchymal transition. Noteworthy, KRS-suppressed cells still exhibited focal adhesions on laminin, with Tyr397-phopshorylated focal adhesion kinase (FAK), but they lacked laminin-adhesion-mediated extracellular signal-regulated kinase (ERK) and paxillin activation. KRS, p67LR and integrin α6β1 were found to interact, presumably to activate ERK for paxillin expression and Tyr118 phosphorylation even without involvement of FAK, so that specific inhibition of ERK or KRS in parental HCT116 cells blocked cell-cell adhesion and cell-substrate properties for focal adhesion formation and signaling activity. Together, these results indicate that KRS can promote cell-cell and cell-ECM adhesion for migration.

References

1 

Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT and Horwitz AR: Cell migration: Integrating signals from front to back. Science. 302:1704–1709. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Collins C and Nelson WJ: Running with neighbors: Coordinating cell migration and cell-cell adhesion. Curr Opin Cell Biol. 36:62–70. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Geiger B, Spatz JP and Bershadsky AD: Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol. 10:21–33. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Geiger T and Geiger B: Towards elucidation of functional molecular signatures of the adhesive-migratory phenotype of malignant cells. Semin Cancer Biol. 20:146–152. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Park SG, Kim HJ, Min YH, Choi EC, Shin YK, Park BJ, Lee SW and Kim S: Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response. Proc Natl Acad Sci USA. 102:6356–6361. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Yannay-Cohen N, Carmi-Levy I, Kay G, Yang CM, Han JM, Kemeny DM, Kim S, Nechushtan H and Razin E: LysRS serves as a key signaling molecule in the immune response by regulating gene expression. Mol Cell. 34:603–611. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Kim DG, Choi JW, Lee JY, Kim H, Oh YS, Lee JW, Tak YK, Song JM, Razin E, Yun SH, et al: Interaction of two translational components, lysyl-tRNA synthetase and p40/37LRP, in plasma membrane promotes laminin-dependent cell migration. FASEB J. 26:4142–4159. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Kim DG, Lee JY, Kwon NH, Fang P, Zhang Q, Wang J, Young NL, Guo M, Cho HY, Mushtaq AU, et al: Chemical inhibition of prometastatic lysyl-tRNA synthetase-laminin receptor interaction. Nat Chem Biol. 10:29–34. 2014. View Article : Google Scholar :

9 

Canfield SM and Khakoo AY: The nonintegrin laminin binding protein (p67 LBP) is expressed on a subset of activated human T lymphocytes and, together with the integrin very late activation antigen-6, mediates avid cellular adherence to laminin. J Immunol. 163:3430–3440. 1999.PubMed/NCBI

10 

Ardini E, Tagliabue E, Magnifico A, Butò S, Castronovo V, Colnaghi MI and Ménard S: Co-regulation and physical association of the 67-kDa monomeric laminin receptor and the alpha6beta4 integrin. J Biol Chem. 272:2342–2345. 1997. View Article : Google Scholar : PubMed/NCBI

11 

Berno V, Porrini D, Castiglioni F, Campiglio M, Casalini P, Pupa SM, Balsari A, Ménard S and Tagliabue E: The 67 kDa laminin receptor increases tumor aggressiveness by remodeling laminin-1. Endocr Relat Cancer. 12:393–406. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Carragher NO and Frame MC: Focal adhesion and actin dynamics: A place where kinases and proteases meet to promote invasion. Trends Cell Biol. 14:241–249. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Scales TM and Parsons M: Spatial and temporal regulation of integrin signalling during cell migration. Curr Opin Cell Biol. 23:562–568. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Albiges-Rizo C, Destaing O, Fourcade B, Planus E and Block MR: Actin machinery and mechanosensitivity in invado-podia, podosomes and focal adhesions. J Cell Sci. 122:3037–3049. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Lee JW and Juliano R: Mitogenic signal transduction by integrin-and growth factor receptor-mediated pathways. Mol Cells. 17:188–202. 2004.PubMed/NCBI

17 

Valdembri D and Serini G: Regulation of adhesion site dynamics by integrin traffic. Curr Opin Cell Biol. 24:582–591. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Nam SH, Kim D, Lee MS, Lee D, Kwak TK, Kang M, Ryu J, Kim HJ, Song HE, Choi J, et al: Noncanonical roles of membranous lysyl-tRNA synthetase in transducing cell-substrate signaling for invasive dissemination of colon cancer spheroids in 3D collagen I gels. Oncotarget. 6:21655–21674. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Lee SA, Kim YM, Kwak TK, Kim HJ, Kim S, Ko W, Kim SH, Park KH, Kim HJ, Cho M, et al: The extracellular loop 2 of TM4SF5 inhibits integrin alpha2 on hepatocytes under collagen type I environment. Carcinogenesis. 30:1872–1879. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Jung O, Choi S, Jang SB, Lee SA, Lim ST, Choi YJ, Kim HJ, Kim DH, Kwak TK, Kim H, et al: Tetraspan TM4SF5-dependent direct activation of FAK and metastatic potential of hepatocarcinoma cells. J Cell Sci. 125:5960–5973. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Dumbauld DW, Lee TT, Singh A, Scrimgeour J, Gersbach CA, Zamir EA, Fu J, Chen CS, Curtis JE, Craig SW, et al: How vinculin regulates force transmission. Proc Natl Acad Sci USA. 110:9788–9793. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Clark K, Howe JD, Pullar CE, Green JA, Artym VV, Yamada KM and Critchley DR: Tensin 2 modulates cell contractility in 3D collagen gels through the RhoGAP DLC1. J Cell Biochem. 109:808–817. 2010.PubMed/NCBI

23 

Chua KN, Poon KL, Lim J, Sim WJ, Huang RY and Thiery JP: Target cell movement in tumor and cardiovascular diseases based on the epithelial-mesenchymal transition concept. Adv Drug Deliv Rev. 63:558–567. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Huang RY, Wong MK, Tan TZ, Kuay KT, Ng AH, Chung VY, Chu YS, Matsumura N, Lai HC, Lee YF, et al: An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis. 4:e9152013. View Article : Google Scholar : PubMed/NCBI

25 

Thiery JP and Lim CT: Tumor dissemination: An EMT affair. Cancer Cell. 23:272–273. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, et al: Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 339:580–584. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Panetti TS: Tyrosine phosphorylation of paxillin, FAK, and p130CAS: Effects on cell spreading and migration. Front Biosci. 7:d143–d150. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT and Horwitz AF: FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol. 6:154–161. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Schlaepfer DD, Hanks SK, Hunter T and van der Geer P: Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature. 372:786–791. 1994. View Article : Google Scholar : PubMed/NCBI

30 

Lin TH, Aplin AE, Shen Y, Chen Q, Schaller M, Romer L, Aukhil I and Juliano RL: Integrin-mediated activation of MAP kinase is independent of FAK: Evidence for dual integrin signaling pathways in fibroblasts. J Cell Biol. 136:1385–1395. 1997. View Article : Google Scholar : PubMed/NCBI

31 

Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE and Giancotti FG: The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell. 87:733–743. 1996. View Article : Google Scholar : PubMed/NCBI

32 

Wary KK, Mariotti A, Zurzolo C and Giancotti FG: A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell. 94:625–634. 1998. View Article : Google Scholar : PubMed/NCBI

33 

Lu KK, Armstrong SE, Ginnan R and Singer HA: Adhesion-dependent activation of CaMKII and regulation of ERK activation in vascular smooth muscle. Am J Physiol Cell Physiol. 289:C1343–C1350. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2016
Volume 48 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Nam, S.H., Kang, M., Ryu, J., Kim, H., Kim, D., Kim, D.G. ... Lee, J.W. (2016). Suppression of lysyl-tRNA synthetase, KRS, causes incomplete epithelial-mesenchymal transition and ineffective cell‑extracellular matrix adhesion for migration. International Journal of Oncology, 48, 1553-1560. https://doi.org/10.3892/ijo.2016.3381
MLA
Nam, S. H., Kang, M., Ryu, J., Kim, H., Kim, D., Kim, D. G., Kwon, N. H., Kim, S., Lee, J. W."Suppression of lysyl-tRNA synthetase, KRS, causes incomplete epithelial-mesenchymal transition and ineffective cell‑extracellular matrix adhesion for migration". International Journal of Oncology 48.4 (2016): 1553-1560.
Chicago
Nam, S. H., Kang, M., Ryu, J., Kim, H., Kim, D., Kim, D. G., Kwon, N. H., Kim, S., Lee, J. W."Suppression of lysyl-tRNA synthetase, KRS, causes incomplete epithelial-mesenchymal transition and ineffective cell‑extracellular matrix adhesion for migration". International Journal of Oncology 48, no. 4 (2016): 1553-1560. https://doi.org/10.3892/ijo.2016.3381