Gene expression profiling of microRNAs associated with UCA1 in bladder cancer cells

  • Authors:
    • Xiaojuan Xie
    • Jingjing Pan
    • Liqiang Wei
    • Shouzhen Wu
    • Huilian Hou
    • Xu Li
    • Wei Chen
  • View Affiliations

  • Published online on: January 25, 2016     https://doi.org/10.3892/ijo.2016.3357
  • Pages: 1617-1627
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Emerging evidence indicates that non-coding RNAs, such as lncRNAs and microRNAs, play important roles in diverse diseases, such as cancer, immune diseases and cardiovascular diseases. Interestingly, lncRNAs could directly or indirectly regulate the expression of miRNAs. However, the expression profiling of miRNAs associated with UCA1 in bladder cancer remains unknown. Here, we used Illumina deep sequencing to sequence miRNA libraries from both the UCA1 knockdown and normal high-expression 5637 cells. We identified 225 and 235 miRNAs expressed in 5637 cells of normal high-expression and knockdown of UCA1, respectively. Overall, expression of 75 miRNAs showed significant difference associated with UCA1, of which 38 were upregulated and 37 downregulated with UCA1 knockdown. GO analysis of the host target genes revealed that these aberrantly regulated miRNAs were involved in complex cellular pathways, including biological process, cellular component and molecular function. We selected 8 candidate miRNAs associated with UCA1 and predicted their targeted mRNAs, and found that p27kip1 was a crucial downstream molecule for these 8 miRNAs, especially for miR-196a. KEGG pathway analysis showed that PI3K-Akt signaling pwathway was involved in regulating these 8 candidant miRNAs. Among these 8 candidant miRNAs, we observed the correlation among UCA1, miR-196a and the host target mRNA, p27kip1, in bladder cancer cells and tissues. UCA1 was upregulated by miR-196a and positively correlated with miR-196a, whereas UCA1 and miR-196a were negatively correlated with p27kip1, which was downregulated in bladder cancer patients. Thus, our findings provided valuable information on miRNAs associated with UCA1 in bladder cancer, which could be helpful to further explore the related genes and molecular networks fundamental in bladder cancer progression.

References

1 

Volders PJ, Helsens K, Wang X, Menten B, Martens L, Gevaert K, Vandesompele J and Mestdagh P: LNCipedia: A database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 41:D246–D251. 2013. View Article : Google Scholar :

2 

ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 489:57–74. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Nagano T and Fraser P: No-nonsense functions for long noncoding RNAs. Cell. 145:178–181. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Wapinski O and Chang HY: Long noncoding RNAs and human disease. Trends Cell Biol. 21:354–361. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Gibb EA, Brown CJ and Lam WL: The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 10:382011. View Article : Google Scholar : PubMed/NCBI

6 

Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Wang X, Song X, Glass CK and Rosenfeld MG: The long arm of long noncoding RNAs: Roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol. 3:a0037562011. View Article : Google Scholar

8 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Thomas M, Lieberman J and Lal A: Desperately seeking microRNA targets. Nat Struct Mol Biol. 17:1169–1174. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Mattick JS: Non-coding RNAs: The architects of eukaryotic complexity. EMBO Rep. 2:986–991. 2001. View Article : Google Scholar : PubMed/NCBI

13 

Mattick JS and Gagen MJ: The evolution of controlled multitasked gene networks: The role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol. 18:1611–1630. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Tay Y, Rinn J and Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Gutschner T and Diederichs S: The hallmarks of cancer: A long non-coding RNA point of view. RNA Biol. 9:703–719. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Kasinski AL and Slack FJ: Epigenetics and genetics. MicroRNAs en route to the clinic: Progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 11:849–864. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Stahlhut C and Slack FJ: MicroRNAs and the cancer phenotype: Profiling, signatures and clinical implications. Genome Med. 5:111–122. 2013. View Article : Google Scholar

18 

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Dvinge H, Git A, Gräf S, Salmon-Divon M, Curtis C, Sottoriva A, Zhao Y, Hirst M, Armisen J, Miska EA, et al: The shaping and functional consequences of the microRNA landscape in breast cancer. Nature. 497:378–382. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Kim TM, Huang W, Park R, Park PJ and Johnson MD: A developmental taxonomy of glioblastoma defined and maintained by MicroRNAs. Cancer Res. 71:3387–3399. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Manterola L, Guruceaga E, Gállego Pérez-Larraya J, González-Huarriz M, Jauregui P, Tejada S, Diez-Valle R, Segura V, Samprón N, Barrena C, et al: A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-oncol. 16:520–527. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Tsai MC, Spitale RC and Chang HY: Long intergenic noncoding RNAs: New links in cancer progression. Cancer Res. 71:3–7. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Mercer TR, Dinger ME and Mattick JS: Long non-coding RNAs: Insights into functions. Nat Rev Genet. 10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Wang F, Li X, Xie X, Zhao L and Chen W: UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 582:1919–1927. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Yang C, Li X, Wang Y, Zhao L and Chen W: Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells. Gene. 496:8–16. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Metzker ML: Sequencing technologies - the next generation. Nat Rev Genet. 11:31–46. 2010. View Article : Google Scholar

27 

Buermans HP, Ariyurek Y, van Ommen G, den Dunnen JT and ‘t Hoen PA: New methods for next generation sequencing based microRNA expression profiling. BMC Genomics. 11:716–731. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Anselmo A, Flori L, Jaffrezic F, Rutigliano T, Cecere M, Cortes-Perez N, Lefèvre F, Rogel-Gaillard C and Giuffra E: Co-expression of host and viral microRNAs in porcine dendritic cells infected by the pseudorabies virus. PLoS One. 6:e173742011. View Article : Google Scholar : PubMed/NCBI

29 

Stark MS, Tyagi S, Nancarrow DJ, Boyle GM, Cook AL, Whiteman DC, Parsons PG, Schmidt C, Sturm RA and Hayward NK: Characterization of the melanoma miRNAome by deep sequencing. PLoS One. 5:e96852010. View Article : Google Scholar : PubMed/NCBI

30 

Li M, Liu Y, Wang T, Guan J, Luo Z, Chen H, Wang X, Chen L, Ma J, Mu Z, et al: Repertoire of porcine microRNAs in adult ovary and testis by deep sequencing. Int J Biol Sci. 7:1045–1055. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Wang R, Wang ZX, Yang JS, Pan X, De W and Chen LB: MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene. 30:2644–2658. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Guan Y, Mizoguchi M, Yoshimoto K, Hata N, Shono T, Suzuki SO, Araki Y, Kuga D, Nakamizo A, Amano T, et al: MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance. Clin Cancer Res. 16:4289–4297. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Schimanski CC, Frerichs K, Rahman F, Berger M, Lang H, Galle PR, Moehler M and Gockel I: High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroenterol. 15:2089–2096. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Luthra R, Singh RR, Luthra MG, Li YX, Hannah C, Romans AM, Barkoh BA, Chen SS, Ensor J, Maru DM, et al: MicroRNA-196a targets annexin A1: A microRNA-mediated mechanism of annexin A1 downregulation in cancers. Oncogene. 27:6667–6678. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Sun M, Liu XH, Li JH, Yang JS, Zhang EB, Yin DD, Liu ZL, Zhou J, Ding Y, Li SQ, et al: MiR-196a is upregulated in gastric cancer and promotes cell proliferation by downregulating p27(kip1). Mol Cancer Ther. 11:842–852. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2016
Volume 48 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xie, X., Pan, J., Wei, L., Wu, S., Hou, H., Li, X., & Chen, W. (2016). Gene expression profiling of microRNAs associated with UCA1 in bladder cancer cells. International Journal of Oncology, 48, 1617-1627. https://doi.org/10.3892/ijo.2016.3357
MLA
Xie, X., Pan, J., Wei, L., Wu, S., Hou, H., Li, X., Chen, W."Gene expression profiling of microRNAs associated with UCA1 in bladder cancer cells". International Journal of Oncology 48.4 (2016): 1617-1627.
Chicago
Xie, X., Pan, J., Wei, L., Wu, S., Hou, H., Li, X., Chen, W."Gene expression profiling of microRNAs associated with UCA1 in bladder cancer cells". International Journal of Oncology 48, no. 4 (2016): 1617-1627. https://doi.org/10.3892/ijo.2016.3357