Agarol, an ergosterol derivative from Agaricus blazei, induces caspase-independent apoptosis in human cancer cells

  • Authors:
    • Takamitsu Shimizu
    • Junya Kawai
    • Kenji Ouchi
    • Haruhisa Kikuchi
    • Yoshiteru Osima
    • Rikiishi Hidemi
  • View Affiliations

  • Published online on: February 15, 2016     https://doi.org/10.3892/ijo.2016.3391
  • Pages: 1670-1678
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Agaricus blazei (A. blazei) is a mushroom with many biological effects and active ingredients. We purified a tumoricidal substance from A. blazei, an ergosterol derivative, and named it ‘Agarol’. Cytotoxic effects of Agarol were determined by the MTT assay using A549, MKN45, HSC-3, and HSC-4 human carcinoma cell lines treated with Agarol. Apoptosis was detected by flow cytometry analysis. Reactive oxygen species (ROS) levels and mitochondria membrane potential (∆ψm) were also determined by flow cytometry. Western blot analysis was used to quantify the expression of apoptosis-related proteins. Agarol predominantly induced apoptosis in two p53-wild cell lines (A549 and MKN45) compared to the other p53-mutant cell lines (HSC-3 and HSC-4). Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of ROS, reduced ∆ψm, release of apoptosis-inducing factor (AIF) from the mitochondria to the cytosol, upregulation of Bax, and downregulation of Bcl-2. Caspase-3 activities did not increase, and z-VAD-fmk, a caspase inhibitor, did not inhibit the Agarol-induced apoptosis. These findings indicate that Agarol induces caspase-independent apoptosis in human carcinoma cells through a mitochondrial pathway. The in vivo anticancer activity of Agarol was confirmed in a xenograft murine model. This study suggests a molecular mechanism by which Agarol induces apoptosis in human carcinoma cells and indicates the potential use of Agarol as an anticancer agent.

References

1 

Xu T, Beelman RB and Lambert JD: The cancer preventive effects of edible mushrooms. Anticancer Agents Med Chem. 12:1255–1263. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Kidd PM: The use of mushroom glucans and proteoglycans in cancer treatment. Altern Med Rev. 5:4–27. 2000.PubMed/NCBI

3 

Ohno N, Furukawa M, Miura NN, Adachi Y, Motoi M and Yadomae T: Antitumor beta glucan from the cultured fruit body of Agaricus blazei. Biol Pharm Bull. 24:820–828. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Takaku T, Kimura Y and Okuda H: Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action. J Nutr. 131:1409–1413. 2001.PubMed/NCBI

5 

Su Z-Y, Tung Y-C, Hwang LS and Sheen L-Y: Blazeispirol A from Agaricus blazei fermentation product induces cell death in human hepatoma Hep 3B cells through caspase-dependent and caspase-independent pathways. J Agric Food Chem. 59:5109–5116. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Ziliotto L, Pinheiro F, Barbisan LF and Rodrigues MAM: Screening for in vitro and in vivo antitumor activities of the mushroom Agaricus blazei. Nutr Cancer. 61:245–250. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Suzuki M, Endo M, Shinohara F, Echigo S and Rikiishi H: Differential apoptotic response of human cancer cells to organoselenium compounds. Cancer Chemother Pharmacol. 66:475–484. 2010. View Article : Google Scholar

8 

Kroemer G and Martin SJ: Caspase-independent cell death. Nat Med. 11:725–730. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Hirose T and Horvitz HR: An Sp1 transcription factor coordinates caspase-dependent and -independent apoptotic pathways. Nature. 500:354–358. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Kim E-A, Jang J-H, Lee Y-H, Sung EG, Song IH, Kim JY, Kim S, Sohn HY and Lee TJ: Dioscin induces caspase-independent apoptosis through activation of apoptosis-inducing factor in breast cancer cells. Apoptosis. 19:1165–1175. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Yogeeswari P and Sriram D: Betulinic acid and its derivatives: A review on their biological properties. Curr Med Chem. 12:657–666. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Liu Y and Luo W: Betulinic acid induces Bax/Bak-independent cytochrome c release in human nasopharyngeal carcinoma cells. Mol Cells. 33:517–524. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Hetland G, Johnson E, Lyberg T and Kvalheim G: The mushroom Agaricus blazei murill elicits medicinal effects on tumor, infection, allergy, and inflammation through its modulation of innate immunity and amelioration of Th1/Th2 imbalance and inflammation. Adv Pharmacol Sci. 2011:1570152011.PubMed/NCBI

14 

Ooi VE and Liu F: Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem. 7:715–729. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Yu C-H, Kan S-F, Shu C-H, Lu T-J, Sun-Hwang L and Wang PS: Inhibitory mechanisms of Agaricus blazei Murill on the growth of prostate cancer in vitro and in vivo. J Nutr Biochem. 20:753–764. 2009. View Article : Google Scholar

16 

Kobayashi H, Yoshida R, Kanada Y, Fukuda Y, Yagyu T, Inagaki K, Kondo T, Kurita N, Suzuki M, Kanayama N, et al: Suppressing effects of daily oral supplementation of beta-glucan extracted from Agaricus blazei Murill on spontaneous and peritoneal disseminated metastasis in mouse model. J Cancer Res Clin Oncol. 131:527–538. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Jin C-Y, Choi YH, Moon D-O, Park C, Park YM, Jeong SC, Heo MS, Lee TH, Lee JD and Kim GY: Induction of G2/M arrest and apoptosis in human gastric epithelial AGS cells by aqueous extract of Agaricus blazei. Oncol Rep. 16:1349–1355. 2006.PubMed/NCBI

18 

Rieber M and Rieber MS: Signalling responses linked to betulinic acid-induced apoptosis are antagonized by MEK inhibitor U0126 in adherent or 3D spheroid melanoma irrespective of p53 status. Int J Cancer. 118:1135–1143. 2006. View Article : Google Scholar

19 

Green DR and Kroemer G: Cytoplasmic functions of the tumour suppressor p53. Nature. 458:1127–1130. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Tung Y-C, Su Z-Y, Kuo M-L and Sheen L-Y: Ethanolic extract of Agaricus blazei fermentation product inhibits the growth and invasion of human hepatoma HA22T/VGH and SK-Hep-1 cells. J Tradit Complement Med. 2:145–153. 2012.PubMed/NCBI

21 

Hajnóczky G, Davies E and Madesh M: Calcium signaling and apoptosis. Biochem Biophys Res Commun. 304:445–454. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Holley AK, Dhar SK and St Clair DK: Manganese superoxide dismutase versus p53: The mitochondrial center. Ann NY Acad Sci. 1201:72–78. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Maillet A and Pervaiz S: Redox regulation of p53, redox effectors regulated by p53: A subtle balance. Antioxid Redox Signal. 16:1285–1294. 2012. View Article : Google Scholar

24 

Kim M-O, Moon D-O, Jung JM, Lee WS, Choi YH and Kim G-Y: Agaricus blazei extract induces apoptosis through ROS-dependent JNK activation involving the mitochondrial pathway and suppression of constitutive NF-κB in THP-1 cells. Evid Based Complement Alternat Med. 2011:8381722011. View Article : Google Scholar

25 

Chintharlapalli S, Papineni S, Lei P, Pathi S and Safe S: Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors. BMC Cancer. 11:3712011. View Article : Google Scholar : PubMed/NCBI

26 

Li X, Zhao X, Wang H, Han J and Liu L: A polysaccharide from the fruiting bodies of Agaricus blazei Murill induces caspase-dependent apoptosis in human leukemia HL-60 cells. Tumour Biol. 35:8963–8968. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Xie J, Xu Y, Huang X, Chen Y, Fu J, Xi M and Wang L: Berberine-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway. Tumour Biol. 36:1279–1288. 2015. View Article : Google Scholar

28 

Su J, Cheng H, Zhang D, Wang M, Xie C, Hu Y, Chang HC and Li Q: Synergistic effects of 5-fluorouracil and gambogenic acid on A549 cells: Activation of cell death caused by apoptotic and necroptotic mechanisms via the ROS-mitochondria pathway. Biol Pharm Bull. 37:1259–1268. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Wu M-F, Chen Y-L, Lee M-H, Shih YL, Hsu YM, Tang MC, Lu HF, Tang NY, Yang ST, Chueh FS, et al: Effect of Agaricus blazei Murrill extract on HT-29 human colon cancer cells in SCID mice in vivo. In Vivo. 25:673–677. 2011.PubMed/NCBI

30 

Wasser SP: Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol. 60:258–274. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Nozaki H, Itonori S, Sugita M, Nakamura K, Ohba K, Suzuki A and Kushi Y: Mushroom acidic glycosphingolipid induction of cytokine secretion from murine T cells and proliferation of NK1.1 α/β TCR-double positive cells in vitro. Biochem Biophys Res Commun. 373:435–439. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Lee JS and Hong EK: Agaricus blazei Murill enhances doxorubicin-induced apoptosis in human hepatocellular carcinoma cells by NFκB-mediated increase of intracellular doxorubicin accumulation. Int J Oncol. 38:401–408. 2011.

Related Articles

Journal Cover

April 2016
Volume 48 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Shimizu, T., Kawai, J., Ouchi, K., Kikuchi, H., Osima, Y., & Hidemi, R. (2016). Agarol, an ergosterol derivative from Agaricus blazei, induces caspase-independent apoptosis in human cancer cells. International Journal of Oncology, 48, 1670-1678. https://doi.org/10.3892/ijo.2016.3391
MLA
Shimizu, T., Kawai, J., Ouchi, K., Kikuchi, H., Osima, Y., Hidemi, R."Agarol, an ergosterol derivative from Agaricus blazei, induces caspase-independent apoptosis in human cancer cells". International Journal of Oncology 48.4 (2016): 1670-1678.
Chicago
Shimizu, T., Kawai, J., Ouchi, K., Kikuchi, H., Osima, Y., Hidemi, R."Agarol, an ergosterol derivative from Agaricus blazei, induces caspase-independent apoptosis in human cancer cells". International Journal of Oncology 48, no. 4 (2016): 1670-1678. https://doi.org/10.3892/ijo.2016.3391