Lentivirus-mediated downregulation of MAT2B inhibits cell proliferation and induces apoptosis in melanoma

  • Authors:
    • Yu Lei
    • Bo Zhang
    • Yaohua Zhang
    • Yuan Zhao
    • Jingying Sun
    • Xuejun Zhang
    • Sen Yang
  • View Affiliations

  • Published online on: July 5, 2016     https://doi.org/10.3892/ijo.2016.3603
  • Pages: 981-990
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Malignant melanoma is the most lethal of skin cancers and its pathogenesis is complex and heterogeneous. The efficacy of conventional therapeutic regimens for melanoma remains limited. Thus, it is important to explore novel effective therapeutic targets in the treatment of melanoma. The MAT2B gene encodes for the regulatory subunit of methionine adenosyltransferase (MAT). Recent studies have suggested that MAT2B may have functional roles other than modulating catalytic activity of MAT. In order to identify the roles of MAT2B in the tumorigenesis of malignant melanoma, we compared MAT2B expression profile in melanoma tissues with that in benign nevus samples. We employed lentivirus-mediated RNAi to downregulate the expression of MAT2B in malignant melanoma cell lines (A375 and Mel-RM), and investigated the effects of MAT2B on cell growth, colony-formation ability and apoptosis in vitro, as well as tumor growth of a xenograft model in vivo. The expression levels of BCL2 and XAF1 proteins, which were closely related to tumor cell apoptosis, were analyzed by western blot analysis. Our data showed that MAT2B was elevated in both primary and metastatic melanoma tissues compared with benign nevus samples. Lentivirus-mediated downregulation of MAT2B suppressed cell growth, colony formation and induced apoptosis in A375 and Mel-RM cell lines in vitro, affected protein expression of BCL2 and XAF1, extended the transplanted tumor growth in vivo. These results indicated that MAT2B was critical in the proliferation of melanoma cells and tumorigenicity. It may be considered as a potential anti-melanoma therapeutic target.

References

1 

Lu SC and Mato JM: S-adenosylmethionine in liver health, injury, and cancer. Physiol Rev. 92:1515–1542. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Halim AB, LeGros L, Geller A and Kotb M: Expression and functional interaction of the catalytic and regulatory subunits of human methionine adenosyltransferase in mammalian cells. J Biol Chem. 274:29720–29725. 1999. View Article : Google Scholar : PubMed/NCBI

3 

LeGros HL Jr, Halim AB, Geller AM and Kotb M: Cloning, expression, and functional characterization of the β regulatory subunit of human methionine adenosyltransferase (MAT II). J Biol Chem. 275:2359–2366. 2000. View Article : Google Scholar : PubMed/NCBI

4 

LeGros L, Halim AB, Chamberlin ME, Geller A and Kotb M: Regulation of the human MAT2B gene encoding the regulatory beta subunit of methionine adenosyltransferase, MAT II. J Biol Chem. 276:24918–24924. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Yang H, Ara AI, Magilnick N, Xia M, Ramani K, Chen H, Lee TD, Mato JM and Lu SC: Expression pattern, regulation, and functions of methionine adenosyltransferase 2beta splicing variants in hepatoma cells. Gastroenterology. 134:281–291. 2008. View Article : Google Scholar

6 

Wang Q, Liu QY, Liu ZS, Qian Q, Sun Q and Pan DY: Lentivirus mediated shRNA interference targeting MAT2B induces growth-inhibition and apoptosis in hepatocelluar carcinoma. World J Gastroenterol. 14:4633–4642. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Peng H, Dara L, Li TW, Zheng Y, Yang H, Tomasi ML, Tomasi I, Giordano P, Mato JM and Lu SC: MAT2B-GIT1 interplay activates MEK1/ERK 1 and 2 to induce growth in human liver and colon cancer. Hepatology. 57:2299–2313. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Peng H, Li TW, Yang H, Moyer MP, Mato JM and Lu SC: Methionine adenosyltransferase 2B-GIT1 complex serves as a scaffold to regulate Ras/Raf/MEK1/2 activity in human liver and colon cancer cells. Am J Pathol. 185:1135–1144. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Xia M, Chen Y, Wang LC, Zandi E, Yang H, Bemanian S, Martínez-Chantar ML, Mato JM and Lu SC: Novel function and intracellular localization of methionine adenosyltransferase 2beta splicing variants. J Biol Chem. 285:20015–20021. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Russo A, Ficili B, Candido S, Pezzino FM, Guarneri C, Biondi A, Travali S, McCubrey JA, Spandidos DA and Libra M: Emerging targeted therapies for melanoma treatment (Review). Int J Oncol. 45:516–524. 2014.PubMed/NCBI

12 

Wilmott JS, Menzies AM, Haydu LE, Capper D, Preusser M, Zhang YE, Thompson JF, Kefford RF, von Deimling A, Scolyer RA, et al: BRAF(V600E) protein expression and outcome from BRAF inhibitor treatment in BRAF(V600E) metastatic melanoma. Br J Cancer. 108:924–931. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT, et al: Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 366:707–714. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Ascierto PA, Minor D, Ribas A, Lebbe C, O’Hagan A, Arya N, Guckert M, Schadendorf D, Kefford RF, Grob JJ, et al: Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol. 31:3205–3211. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Budwit-Novotny DA, McCarty KS, Cox EB, Soper JT, Mutch DG, Creasman WT, Flowers JL and McCarty KS Jr: Immunohistochemical analyses of estrogen receptor in endometrial adenocarcinoma using a monoclonal antibody. Cancer Res. 46:5419–5425. 1986.PubMed/NCBI

16 

Specht E, Kaemmerer D, Sänger J, Wirtz RM, Schulz S and Lupp A: Comparison of immunoreactive score, HER2/neu score and H score for the immunohistochemical evaluation of somatostatin receptors in bronchopulmonary neuroendocrine neoplasms. Histopathology. 67:368–377. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Lei Y, Li HX, Jin WS, Peng WR, Zhang CJ, Bu LJ, Du YY, Ma T and Sun GP: The radiosensitizing effect of Paeonol on lung adenocarcinoma by augmentation of radiation-induced apoptosis and inhibition of the PI3K/Akt pathway. Int J Radiat Biol. 89:1079–1086. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Rygaard K and Spang-Thomsen M: Quantitation and gompertzian analysis of tumor growth. Breast Cancer Res Treat. 46:303–312. 1997. View Article : Google Scholar

19 

Kocab AJ and Duckett CS: Inhibitor of apoptosis proteins as intracellular signaling intermediates. FEBS J. 283:221–231. 2016. View Article : Google Scholar

20 

Goldar S, Khaniani MS, Derakhshan SM and Baradaran B: Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 16:2129–2144. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, et al: Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 35(Suppl): S78–S103. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Hartman ML and Czyz M: Anti-apoptotic proteins on guard of melanoma cell survival. Cancer Lett. 331:24–34. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Moldoveanu T, Follis AV, Kriwacki RW and Green DR: Many players in BCL-2 family affairs. Trends Biochem Sci. 39:101–111. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Hata AN, Engelman JA and Faber AC: The BCL2 family: Key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 5:475–487. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Silke J and Vucic D: IAP family of cell death and signaling regulators. Methods Enzymol. 545:35–65. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Liston P, Fong WG, Kelly NL, Toji S, Miyazaki T, Conte D, Tamai K, Craig CG, McBurney MW and Korneluk RG: Identification of XAF1 as an antagonist of XIAP anti-Caspase activity. Nat Cell Biol. 3:128–133. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Zhao WJ, Deng BY, Wang XM, Miao Y and Wang JN: XIAP associated factor 1 (XAF1) represses expression of X-linked inhibitor of apoptosis protein (XIAP) and regulates invasion, cell cycle, apoptosis, and cisplatin sensitivity of ovarian carcinoma cells. Asian Pac J Cancer Prev. 16:2453–2458. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Zhu LM, Shi DM, Dai Q, Cheng XJ, Yao WY, Sun PH, Y, Qiao MM, Wu YL, Jiang SH, et al: Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma. Oncotarget. 5:5403–5415. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Ju WC, Huang GB, Luo XY, Ren WH, Zheng DQ, Chen PJ, Lou YF and Li B: X-linked inhibitor of apoptosis-associated factor l (XAFl) enhances the sensitivity of colorectal cancer cells to cisplatin. Med Oncol. 31:2732014. View Article : Google Scholar : PubMed/NCBI

30 

Huang J, Yao WY, Zhu Q, Tu SP, Yuan F, Wang HF, Zhang YP and Yuan YZ: XAF1 as a prognostic biomarker and therapeutic target in pancreatic cancer. Cancer Sci. 101:559–567. 2010. View Article : Google Scholar

31 

Ng KC, Campos EI, Martinka M and Li G: XAF1 expression is significantly reduced in human melanoma. J Invest Dermatol. 123:1127–1134. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2016
Volume 49 Issue 3

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Lei, Y., Zhang, B., Zhang, Y., Zhao, Y., Sun, J., Zhang, X., & Yang, S. (2016). Lentivirus-mediated downregulation of MAT2B inhibits cell proliferation and induces apoptosis in melanoma. International Journal of Oncology, 49, 981-990. https://doi.org/10.3892/ijo.2016.3603
MLA
Lei, Y., Zhang, B., Zhang, Y., Zhao, Y., Sun, J., Zhang, X., Yang, S."Lentivirus-mediated downregulation of MAT2B inhibits cell proliferation and induces apoptosis in melanoma". International Journal of Oncology 49.3 (2016): 981-990.
Chicago
Lei, Y., Zhang, B., Zhang, Y., Zhao, Y., Sun, J., Zhang, X., Yang, S."Lentivirus-mediated downregulation of MAT2B inhibits cell proliferation and induces apoptosis in melanoma". International Journal of Oncology 49, no. 3 (2016): 981-990. https://doi.org/10.3892/ijo.2016.3603