Open Access

Establishment of three novel cell lines derived from African American patients with colorectal carcinoma: A unique tool for assessing racial health disparity

  • Authors:
    • Jenny Paredes
    • Ping Ji
    • Joseph F. Lacomb
    • Kenneth R. Shroyer
    • Laura A. Martello
    • Jennie L. Williams
  • View Affiliations

  • Published online on: July 31, 2018     https://doi.org/10.3892/ijo.2018.4510
  • Pages: 1516-1528
  • Copyright: © Paredes et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The incidence and mortality rates of colorectal carcinoma (CRC) are higher among African Americans (AAs) compared with Caucasian Americans (CAs). To assess the molecular properties associated with racial health disparity, three cell lines derived from colorectal tumors of three AA subjects were established. Cellular and molecular characterization of the cell lines designated CHTN06, SB501 and SB521 was performed using standard technologies, including immunofluorescence, electron microscopy, karyotyping, reverse transcription-polymerase chain reaction, ELISA and immunoblot analysis. The histology and morphology of CHTN06 xenografts were examined by hematoxylin and eosin staining. A total of three AA CRC cell lines derived from primary tumors were established and characterized. These cell lines were successfully cultured without immortalization and were found to be tumorigenic as mouse xenografts. In the present study, immunoblotting and immunofluorescence confirmed the expression of proteins known to be dysregulated in CRC, such as p53, DNA mismatch repair proteins and villin-1. Oncogenic miRNAs (i.e., miR-17, miR-21, miR-182, miR-210 and miR-222) were overexpressed in the AA CRC lines compared with the CA CRC lines (HT-29, HCT116 and SW480). Additionally, the AA CRC cell lines exhibited a differential inflammatory profile compared with HT-29 (CA CRC cell line); specifically noted was IL-8 secretion in response to inflammatory stimuli. In conclusion, three novel cell lines derived from AA CRC tissues were generated. These cell lines were characterized as epithelial in nature and exhibited differential expression of several miRNAs and inflammatory responses compared with commercially available cell lines of CA origin. The CRC cell lines CHTN06, SB501 and SB521 represent novel tools that may be used to provide diverse in vitro and in vivo models for studying CRC and racial health disparity.

References

1 

Lieberman DA, Holub JL, Moravec MD, Eisen GM, Peters D and Morris CD: Prevalence of colon polyps detected by colonoscopy screening in asymptomatic black and white patients. JAMA. 300:1417–1422. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Alexander D, Jhala N, Chatla C, Steinhauer J, Funkhouser E, Coffey CS, Grizzle WE and Manne U: High-grade tumor differentiation is an indicator of poor prognosis in African Americans with colonic adenocarcinomas. Cancer. 103:2163–2170. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Chien C, Morimoto LM, Tom J and Li CI: Differences in colorectal carcinoma stage and survival by race and ethnicity. Cancer. 104:629–639. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Clegg LX, Li FP, Hankey BF, Chu K and Edwards BK: Cancer survival among US whites and minorities: A SEER (Surveillance, Epidemiology, and End Results) Program population-based study. Arch Intern Med. 162:1985–1993. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Cooper GS, Yuan Z and Rimm AA: Racial disparity in the incidence and case-fatality of colorectal cancer: Analysis of 329 United States counties. Cancer Epidemiol Biomarkers Prev. 6:283–285. 1997.PubMed/NCBI

6 

Hodgson DC, Fuchs CS and Ayanian JZ: Impact of patient and provider characteristics on the treatment and outcomes of colorectal cancer. J Natl Cancer Inst. 93:501–515. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Hodgson DC, Zhang W, Zaslavsky AM, Fuchs CS, Wright WE and Ayanian JZ: Relation of hospital volume to colostomy rates and survival for patients with rectal cancer. J Natl Cancer Inst. 95:708–716. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Mayberry RM, Coates RJ, Hill HA, Click LA, Chen VW, Austin DF, Redmond CK, Fenoglio-Preiser CM, Hunter CP, Haynes MA, et al: Determinants of black/white differences in colon cancer survival. J Natl Cancer Inst. 87:1686–1693. 1995. View Article : Google Scholar : PubMed/NCBI

9 

Ries LAG, Kosary CL, Hankey BF, Miller BA, Harras A and Edwards BK: SEER Cancer Statistics Review. 1973–1994. 1997.

10 

Weber TK, Chin HM, Rodriguez-Bigas M, Keitz B, Gilligan R, O'Malley L, Urf E, Diba N, Pazik J and Petrelli NJ: Novel hMLH1 and hMSH2 germline mutations in African Americans with colorectal cancer. JAMA. 281:2316–2320. 1999. View Article : Google Scholar : PubMed/NCBI

11 

Carethers JM: Racial and ethnic factors in the genetic pathogenesis of colorectal cancer. J Assoc Acad Minor Phys. 10:59–67. 1999.

12 

Burn J, Gerdes AM, Macrae F, Mecklin JP, Moeslein G, Olschwang S, Eccles D, Evans DG, Maher ER, Bertario L, et al: CAPP2 Investigators: Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: An analysis from the CAPP2 randomised controlled trial. Lancet. 378:2081–2087. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Tougeron D, Sha D, Manthravadi S and Sinicrope FA: Aspirin and colorectal cancer: Back to the future. Clin Cancer Res. 20:1087–1094. 2014. View Article : Google Scholar :

14 

Waugh DJ and Wilson C: The interleukin-8 pathway in cancer. Clin Cancer Res. 14:6735–6741. 2008. View Article : Google Scholar : PubMed/NCBI

15 

De Simone V, Franzè E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, Sica GS, Sileri P, MacDonald TT, Pallone F, et al: Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 34:3493–3503. 2015. View Article : Google Scholar

16 

Goodman JE, Bowman ED, Chanock SJ, Alberg AJ and Harris CC: Arachidonate lipoxygenase (ALOX) and cyclo-oxygenase (COX) polymorphisms and colon cancer risk. Carcinogenesis. 25:2467–2472. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Sansbury LB, Millikan RC, Schroeder JC, Moorman PG, North KE and Sandler RS: Use of nonsteroidal antiinflammatory drugs and risk of colon cancer in a population-based, case-control study of African Americans and Whites. Am J Epidemiol. 162:548–558. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Mackenzie GG, Sun Y, Huang L, Xie G, Ouyang N, Gupta RC, Johnson F, Komninou D, Kopelovich L and Rigas B: Phosphosulindac (OXT-328), a novel sulindac derivative, is safe and effective in colon cancer prevention in mice. Gastroenterology. 139:1320–1332. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Ouyang N, Williams JL and Rigas B: NO-donating aspirin isomers downregulate peroxisome proliferator-activated receptor (PPAR)delta expression in APC(min/+) mice proportionally to their tumor inhibitory effect: Implications for the role of PPARdelta in carcinogenesis. Carcinogenesis. 27:232–239. 2006. View Article : Google Scholar

20 

Ouyang N, Ji P and Williams JL: A novel NSAID derivative, phosphoibuprofen, prevents AOM-induced colon cancer in rats. Int J Oncol. 42:643–650. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Williams JL, Ji P, Ouyang N, Kopelovich L and Rigas B: Protein nitration and nitrosylation by NO-donating aspirin in colon cancer cells: Relevance to its mechanism of action. Exp Cell Res. 317:1359–1367. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Puvvada SD, Funkhouser WK, Greene K, Deal A, Chu H, Baldwin AS, Tepper JE and O'Neil BH: NF-κB and Bcl-3 activation are prognostic in metastatic colorectal cancer. Oncology. 78:181–188. 2010. View Article : Google Scholar :

23 

Al-Maghrabi J, Gomaa W, Buhmeida A, Al-Qahtani M and Al-Ahwal M: Loss of villin immunoexpression in colorectal carcinoma is associated with poor differentiation and survival. ISRN Gastroenterol. 2013:6797242013.PubMed/NCBI

24 

Arango D, Al-Obaidi S, Williams DS, Dopeso H, Mazzolini R, Corner G, Byun DS, Carr AA, Murone C, Tögel L, et al: Villin expression is frequently lost in poorly differentiated colon cancer. Am J Pathol. 180:1509–1521. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Brat DJ, Bellail AC and Van Meir EG: The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol. 7:122–133. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Alfaro C, Suárez N, Martínez-Forero I, Palazón A, Rouzaut A, Solano S, Feijoo E, Gúrpide A, Bolaños E, Erro L, et al: Carcinoma-derived interleukin-8 disorients dendritic cell migration without impairing T-cell stimulation. PLoS One. 6:e179222011. View Article : Google Scholar : PubMed/NCBI

27 

Frouws MA, Reimers MS, Swets M, Bastiaannet E, Prinse B, van Eijk R, Lemmens VE, van Herk-Sukel MP, van Wezel T, Kuppen PJ, et al: The influence of BRAF and KRAS mutation status on the association between aspirin use and survival after colon cancer diagnosis. PLoS One. 12:e01707752017. View Article : Google Scholar : PubMed/NCBI

28 

Zhao S, Wu D, Wu P, Wang Z and Huang J: Serum IL-10 Predicts worse outcome in cancer patients: A meta-analysis. PLoS One. 10:e01395982015. View Article : Google Scholar : PubMed/NCBI

29 

Peddareddigari VG, Wang D and Dubois RN: The tumor microenvironment in colorectal carcinogenesis. Cancer Microenviron. 3:149–166. 2010. View Article : Google Scholar

30 

Rodrigues NR, Rowan A, Smith ME, Kerr IB, Bodmer WF, Gannon JV and Lane DP: p53 mutations in colorectal cancer. Proc Natl Acad Sci USA. 87:7555–7559. 1990. View Article : Google Scholar : PubMed/NCBI

31 

Bosari S, Viale G, Bossi P, Maggioni M, Coggi G, Murray JJ and Lee AK: Cytoplasmic accumulation of p53 protein: An independent prognostic indicator in colorectal adenocarcinomas. J Natl Cancer Inst. 86:681–687. 1994. View Article : Google Scholar : PubMed/NCBI

32 

Bosari S, Viale G, Roncalli M, Graziani D, Borsani G, Lee AK and Coggi G: p53 gene mutations, p53 protein accumulation and compartmentalization in colorectal adenocarcinoma. Am J Pathol. 147:790–798. 1995.PubMed/NCBI

33 

Iorio MV and Croce CM: Causes and consequences of microRNA dysregulation. Cancer J. 18:215–222. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Li E, Ji P, Ouyang N, Zhang Y, Wang XY, Rubin DC, Davidson NO, Bergamaschi R, Shroyer KR, Burke S, et al: Differential expression of miRNAs in colon cancer between African and Caucasian Americans: Implications for cancer racial health disparities. Int J Oncol. 45:587–594. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Li L, Sarver AL, Khatri R, Hajeri PB, Kamenev I, French AJ, Thibodeau SN, Steer CJ and Subramanian S: Sequential expression of miR-182 and miR-503 cooperatively targets FBXW7, contributing to the malignant transformation of colon adenoma to adenocarcinoma. J Pathol. 234:488–501. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Yang MH, Yu J, Jiang DM, Li WL, Wang S and Ding YQ: microRNA-182 targets special AT-rich sequence-binding protein 2 to promote colorectal cancer proliferation and metastasis. J Transl Med. 12:1092014. View Article : Google Scholar : PubMed/NCBI

37 

Qu A, Du L, Yang Y, Liu H, Li J, Wang L, Liu Y, Dong Z, Zhang X, Jiang X, et al: Hypoxia-inducible MiR-210 is an independent prognostic factor and contributes to metastasis in colorectal cancer. PLoS One. 9:e909522014. View Article : Google Scholar : PubMed/NCBI

38 

Viatour P, Merville MP, Bours V and Chariot A: Phosphorylation of NF-kappaB and IkappaB proteins: Implications in cancer and inflammation. Trends Biochem Sci. 30:43–52. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Brew R, Erikson JS, West DC, Kinsella AR, Slavin J and Christmas SE: Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro. Cytokine. 12:78–85. 2000. View Article : Google Scholar : PubMed/NCBI

40 

Carethers JM, Koi M and Tseng-Rogenski SS: EMAST is a form of microsatellite instability that is initiated by inflammation and modulates colorectal cancer progression. Genes (Basel). 6:185–205. 2015. View Article : Google Scholar :

41 

Jin WJ, Xu JM, Xu WL, Gu DH and Li PW: Diagnostic value of interleukin-8 in colorectal cancer: A case-control study and meta-analysis. World J Gastroenterol. 20:16334–16342. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Wang X, Ji P, Zhang Y, LaComb JF, Tian X, Li E and Williams JL: Aberrant DNA Methylation: Implications in Racial Health Disparity. PLoS One. 11:e01531252016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2018
Volume 53 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Paredes, J., Ji, P., Lacomb, J.F., Shroyer, K.R., Martello, L.A., & Williams, J.L. (2018). Establishment of three novel cell lines derived from African American patients with colorectal carcinoma: A unique tool for assessing racial health disparity. International Journal of Oncology, 53, 1516-1528. https://doi.org/10.3892/ijo.2018.4510
MLA
Paredes, J., Ji, P., Lacomb, J. F., Shroyer, K. R., Martello, L. A., Williams, J. L."Establishment of three novel cell lines derived from African American patients with colorectal carcinoma: A unique tool for assessing racial health disparity". International Journal of Oncology 53.4 (2018): 1516-1528.
Chicago
Paredes, J., Ji, P., Lacomb, J. F., Shroyer, K. R., Martello, L. A., Williams, J. L."Establishment of three novel cell lines derived from African American patients with colorectal carcinoma: A unique tool for assessing racial health disparity". International Journal of Oncology 53, no. 4 (2018): 1516-1528. https://doi.org/10.3892/ijo.2018.4510