Identification of fatal outcome in a childhood nasopharyngeal carcinoma patient by protein expression profiling

  • Authors:
    • Mohamed E.M. Saeed
    • Rolf Mertens
    • Rupert Handgretinger
    • Thomas Efferth
  • View Affiliations

  • Published online on: July 19, 2018     https://doi.org/10.3892/ijo.2018.4491
  • Pages: 1721-1731
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Nasopharyngeal carcinoma (NPC) is a rare disease in children with good prognosis and high cure rate. Nevertheless, certain patients have an unfavorable prognosis due to development of refractory NPC that is unresponsive to any therapeutic strategies. The current study studies a case of a 17 years-old female with non-keratinizing NPC type IIb (T2N0M0), who passed away as a consequence of resistance to chemo-, radio- and β-interferon therapy, and to an allogenic stem cell transplantation. In order to identify factors that lead to treatment failure and fatal outcome, immunohistochemical analyses of different tumor biomarkers and hierarchical cluster analysis were performed and compared with those of eight other patients with NPC who experienced complete remission following conventional therapy. Hierarchical cluster analysis of the immunohistochemical results clearly demonstrated that staining for immunological factors (CD4, CD8 and CD56) distinguished this patient from the others. To further investigate a potential role of the immune system, lymphocytic infiltration was assessed in tumor tissue by evaluation of hematoxylin and eosin-stained tumor sections. Indeed, no tumor infiltrating lymphocytes (TILs) were observed in this NPC case, while 7 out of 8 of the other NPC samples contained variable TIL amounts. The view that immunodeficiency of the patient may be a factor in the fatal outcome of treatment is supported by the fact that this patient with NPC was not positive for Epstein-Barr virus markers and also infected by several other viruses and fungi (herpes simplex virus, human herpes virus 6, Varicella zoster virus, and Candida). In conclusion, the investigation of rare NPC cases with poor prognosis may provide an improved understanding of the molecular mechanisms involved in refractory tumors and identification of novel potential therapeutic targets for NPC in the future.

References

1 

Parkin DM and Muir CS: Cancer Incidence in Five Continents. Comparability and quality of data. IARC Sci Publ. 120:45–173. 1992.

2 

Chong VH, Telisinghe PU, Lim E, Abdullah MS, Idris F and Chong CF: Declining incidence of nasopharyngeal carcinoma in brunei darussalam: A three decade study (1986-2014). Asian Pac J Cancer Prev. 16:7097–7101. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar

4 

Healy GB: Malignant tumors of the head and neck in children: Diagnosis and treatment. Otolaryngol Clin North Am. 13:483–488. 1980.PubMed/NCBI

5 

Cunningham MJ, Myers EN and Bluestone CD: Malignant tumors of the head and neck in children: A twenty-year review. Int J Pediatr Otorhinolaryngol. 13:279–292. 1987. View Article : Google Scholar : PubMed/NCBI

6 

Wang Y, Zhang Y and Ma S: Racial differences in nasopharyngeal carcinoma in the United States. Cancer Epidemiol. 37:793–802. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Chan AT, Teo PM and Johnson PJ: Nasopharyngeal carcinoma. Ann Oncol. 13:1007–1015. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Society AC: Cancer Facts & Figures 2015 Nasopharyngeal Cancer. American Cancer Society; Atlanta, GA: pp. 1–44. 2015

9 

Singhi AD, Califano J and Westra WH: High-risk human papillomavirus in nasopharyngeal carcinoma. Head Neck. 34:213–218. 2012. View Article : Google Scholar

10 

Robinson M, Suh YE, Paleri V, Devlin D, Ayaz B, Pertl L and Thavaraj S: Oncogenic human papillomavirus-associated nasopharyngeal carcinoma: An observational study of correlation with ethnicity, histological subtype and outcome in a UK population. Infect Agent Cancer. 8:302013. View Article : Google Scholar : PubMed/NCBI

11 

Lo EJ, Bell D, Woo J, Li G, Hanna EY, El-Naggar AK and Sturgis EM: Human papillomavirus & WHO type I nasopharyngeal carcinoma. Laryngoscope. 120(Suppl 4): S1852010. View Article : Google Scholar

12 

Laantri N, Attaleb M, Kandil M, Naji F, Mouttaki T, Dardari R, Belghmi K, Benchakroun N, El Mzibri M and Khyatti M: Human papillomavirus detection in moroccan patients with nasopharyngeal carcinoma. Infect Agent Cancer. 6:32011. View Article : Google Scholar : PubMed/NCBI

13 

Giannoudis A, Ergazaki M, Segas J, Giotakis J, Adamopoulos G, Gorgoulis V and Spandidos DA: Detection of Epstein-Barr virus and human papillomavirus in nasopharyngeal carcinoma by the polymerase chain reaction technique. Cancer Lett. 89:177–181. 1995. View Article : Google Scholar : PubMed/NCBI

14 

Buehrlen M, Zwaan CM, Granzen B, Lassay L, Deutz P, Vorwerk P, Staatz G, Gademann G, Christiansen H, Oldenburger F, et al: Multimodal treatment, including interferon beta, of nasopharyngeal carcinoma in children and young adults: Preliminary results from the prospective, multicenter study NPC-2003-GPOH/DCOG. Cancer. 118:4892–4900. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Kontny U, Franzen S, Behrends U, Bührlen M, Christiansen H, Delecluse H, Eble M, Feuchtinger T, Gademann G, Granzen B, et al: Diagnosis and treatment of nasopharyngeal carcinoma in children and adolescents - Recommendations of the GPOH-NPC Study Group. Klin Padiatr. 228:105–112. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Fischer AH, Jacobson KA, Rose J and Zeller R: Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008:pdb.prot4986. 2008.

17 

Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, et al International TILs Working Group 2014: The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an International TILs Working Group 2014. Ann Oncol. 26:259–271. 2015. View Article : Google Scholar

18 

Kadioglu O and Efferth T: Pharmacogenomic characterization of cytotoxic compounds from Salvia officinalis in cancer cells. J Nat Prod. 78:762–775. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Schielke HJ, Fishman JL, Osatuke K and Stiles WB: Creative consensus on interpretations of qualitative data: The Ward method. Psychother Res. 19:558–565. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Efferth T, Fabry U and Osieka R: Apoptosis and resistance to daunorubicin in human leukemic cells. Leukemia. 11:1180–1186. 1997. View Article : Google Scholar : PubMed/NCBI

21 

Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, et al: A gene expression database for the molecular pharmacology of cancer. Nat Genet. 24:236–244. 2000. View Article : Google Scholar : PubMed/NCBI

22 

Mocellin S, Provenzano M, Rossi CR, Pilati P, Nitti D and Lise M: DNA array-based gene profiling: From surgical specimen to the molecular portrait of cancer. Ann Surg. 241:16–26. 2005.

23 

Eisen MB, Spellman PT, Brown PO and Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 95:14863–14868. 1998. View Article : Google Scholar : PubMed/NCBI

24 

Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI

25 

Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M, et al: Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet. 24:227–235. 2000. View Article : Google Scholar : PubMed/NCBI

26 

Yang J, Zhou M, Zhao R, Peng S, Luo Z, Li X, Cao L, Tang K, Ma J, Xiong W, et al: Identification of candidate biomarkers for the early detection of nasopharyngeal carcinoma by quantitative proteomic analysis. J Proteomics. 109:162–175. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Cheuk DK, Billups CA, Martin MG, Roland CR, Ribeiro RC, Krasin MJ and Rodriguez-Galindo C: Prognostic factors and long-term outcomes of childhood nasopharyngeal carcinoma. Cancer. 117:197–206. 2011. View Article : Google Scholar

28 

Volm M, Koomägi R, Mattern J and Efferth T: Expression profile of genes in non-small cell lung carcinomas from long-term surviving patients. Clin Cancer Res. 8:1843–1848. 2002.PubMed/NCBI

29 

Volm M, Koomägi R, Mattern J and Efferth T: Protein expression profiles indicative for drug resistance of non-small cell lung cancer. Br J Cancer. 87:251–257. 2002. View Article : Google Scholar : PubMed/NCBI

30 

Volm M, Koomägi R, Mattern J and Efferth T: Protein expression profile of primary human squamous cell lung carcinomas indicative of the incidence of metastases. Clin Exp Metastasis. 19:385–390. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Trempat P, Tabiasco J, Andre P, Faumont N, Meggetto F, Delsol G, Gascoyne RD, Fournie JJ, Vivier E and Brousset P: Evidence for early infection of nonneoplastic natural killer cells by Epstein-Barr virus. J Virol. 76:11139–11142. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Yuling H, Ruijing X, Li L, Xiang J, Rui Z, Yujuan W, Lijun Z, Chunxian D, Xinti T, Wei X, et al: EBV-induced human CD8+ NKT cells suppress tumorigenesis by EBV-associated malignancies. Cancer Res. 69:7935–7944. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Zheng Y, Cao KY, Ng SP, Chua DT, Sham JS, Kwong DL, Ng MH, Lu L and Zheng BJ: Complementary activation of peripheral natural killer cell immunity in nasopharyngeal carcinoma. Cancer Sci. 97:912–919. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO and Green AR: Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 29:1949–1955. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Haigh TA, Lin X, Jia H, Hui EP, Chan AT, Rickinson AB and Taylor GS: EBV latent membrane proteins (LMPs) 1 and 2 as immunotherapeutic targets: LMP-specific CD4+ cytotoxic T cell recognition of EBV-transformed B cell lines. J Immunol. 180:1643–1654. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Stoker SD, Novalić Z, Wildeman MA, Huitema AD, Verkuijlen SA, Juwana H, Greijer AE, Tan IB, Middeldorp JM and de Boer JP: Epstein-Barr virus-targeted therapy in nasopharyngeal carcinoma. J Cancer Res Clin Oncol. 141:1845–1857. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Taylor GS, Haigh TA, Gudgeon NH, Phelps RJ, Lee SP, Steven NM and Rickinson AB: Dual stimulation of Epstein-Barr Virus (EBV)-specific CD4+- and CD8+-T-cell responses by a chimeric antigen construct: Potential therapeutic vaccine for EBV-positive nasopharyngeal carcinoma. J Virol. 78:768–778. 2004. View Article : Google Scholar :

38 

Comoli P, De Palma R, Siena S, Nocera A, Basso S, Del Galdo F, Schiavo R, Carminati O, Tagliamacco A, Abbate GF, et al: Adoptive transfer of allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T cells with in vitro antitumor activity boosts LMP2-specific immune response in a patient with EBV-related nasopharyngeal carcinoma. Ann Oncol. 15:113–117. 2004. View Article : Google Scholar

39 

Chevrollier A, Loiseau D, Reynier P and Stepien G: Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. Biochim Biophys Acta. 1807:562–567. 2011. View Article : Google Scholar

40 

Wang Z and Sun Y: Targeting p53 for novel anticancer therapy. Transl Oncol. 3:1–12. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Vogelstein B, Lane D and Levine AJ: Surfing the p53 network. Nature. 408:307–310. 2000. View Article : Google Scholar : PubMed/NCBI

42 

Giaccia AJ and Kastan MB: The complexity of p53 modulation: Emerging patterns from divergent signals. Genes Dev. 12:2973–2983. 1998. View Article : Google Scholar : PubMed/NCBI

43 

Scheffner M, Werness BA, Huibregtse JM, Levine AJ and Howley PM: The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 63:1129–1136. 1990. View Article : Google Scholar : PubMed/NCBI

44 

Matlashewski G, Banks L, Wu-Liao J, Spence P, Pim D and Crawford L: The expression of human papillomavirus type 18 E6 protein in bacteria and the production of anti-E6 antibodies. J Gen Virol. 67:1909–1916. 1986. View Article : Google Scholar : PubMed/NCBI

45 

Yim EK and Park JS: The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat. 37:319–324. 2005. View Article : Google Scholar : PubMed/NCBI

46 

Kim KH and Sederstrom JM: Assaying cell cycle status using flow cytometry. Curr Protoc Mol Biol. 111:28.6.1–11. 2015. View Article : Google Scholar

47 

Urruticoechea A, Smith IE and Dowsett M: Proliferation marker Ki-67 in early breast cancer. J Clin Oncol. 23:7212–7220. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Liu P, Sun YL, Du J, Hou XS and Meng H: CD105/Ki67 coexpression correlates with tumor progression and poor prognosis in epithelial ovarian cancer. Int J Gynecol Cancer. 22:586–592. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Masuda M, Shinokuma A, Hirakawa N, Nakashima T and Komiyama S: Expression of bcl-2-, p53, and Ki-67 and outcome of patients with primary nasopharyngeal carcinomas following DNA-damaging treatment. Head Neck. 20:640–644. 1998. View Article : Google Scholar : PubMed/NCBI

50 

Hershey JW: The role of eIF3 and its individual subunits in cancer. Biochim Biophys Acta. 1849:792–800. 2015. View Article : Google Scholar

51 

Dong Z, Liu Z, Cui P, Pincheira R, Yang Y, Liu J and Zhang JT: Role of eIF3a in regulating cell cycle progression. Exp Cell Res. 315:1889–1894. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Yin JY, Shen J, Dong ZZ, Huang Q, Zhong MZ, Feng DY, Zhou HH, Zhang JT and Liu ZQ: Effect of eIF3a on response of lung cancer patients to platinum-based chemotherapy by regulating DNA repair. Clin Cancer Res. 17:4600–4609. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Lala PK and Orucevic A: Role of nitric oxide in tumor progression: Lessons from experimental tumors. Cancer Metastasis Rev. 17:91–106. 1998. View Article : Google Scholar : PubMed/NCBI

54 

Wink DA, Ridnour LA, Hussain SP and Harris CC: The reemergence of nitric oxide and cancer. Nitric Oxide. 19:65–67. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Beckman JS, Beckman TW, Chen J, Marshall PA and Freeman BA: Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA. 87:1620–1624. 1990. View Article : Google Scholar : PubMed/NCBI

56 

Jayasurya A, Dheen ST, Yap WM, Tan NG, Ng YK and Bay BH: Inducible nitric oxide synthase and bcl-2 expression in naso-pharyngeal cancer: Correlation with outcome of patients after radiotherapy. Int J Radiat Oncol Biol Phys. 56:837–845. 2003. View Article : Google Scholar : PubMed/NCBI

57 

Kane AJ, Barker JE, Mitchell GM, Theile DR, Romero R, Messina A, Wagh M, Fraulin FO, Morrison WA and Stewart AG: Inducible nitric oxide synthase (iNOS) activity promotes ischaemic skin flap survival. Br J Pharmacol. 132:1631–1638. 2001. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2018
Volume 53 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Saeed, M.E., Mertens, R., Handgretinger, R., & Efferth, T. (2018). Identification of fatal outcome in a childhood nasopharyngeal carcinoma patient by protein expression profiling. International Journal of Oncology, 53, 1721-1731. https://doi.org/10.3892/ijo.2018.4491
MLA
Saeed, M. E., Mertens, R., Handgretinger, R., Efferth, T."Identification of fatal outcome in a childhood nasopharyngeal carcinoma patient by protein expression profiling". International Journal of Oncology 53.4 (2018): 1721-1731.
Chicago
Saeed, M. E., Mertens, R., Handgretinger, R., Efferth, T."Identification of fatal outcome in a childhood nasopharyngeal carcinoma patient by protein expression profiling". International Journal of Oncology 53, no. 4 (2018): 1721-1731. https://doi.org/10.3892/ijo.2018.4491