Circular RNA‑MTO1 suppresses breast cancer cell viability and reverses monastrol resistance through regulating the TRAF4/Eg5 axis

  • Authors:
    • Yunxiao Liu
    • Yanyan Dong
    • Liping Zhao
    • Lihong Su
    • Jin Luo
  • View Affiliations

  • Published online on: July 17, 2018     https://doi.org/10.3892/ijo.2018.4485
  • Pages: 1752-1762
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Circular RNAs (circRNAs), a class of endogenous RNAs, have emerged as an enigmatic class of genes. However, little is known about their value in the progression and chemoresistance of cancers. The present study sought to determine the expression profiles and potential modulatory role of circRNAs on breast cancer cell viability and monastrol resistance. Monastrol-resistant cell lines were established by exposing breast cancer cells to increasing concentrations of monastrol. A human circRNA microarray was used to search for dysregulated circRNAs in monastrol-resistant cells, then circRNA‑MTO1 (hsa‑circRNA-007874) was validated as a circRNA that exhibited elevated expression levels in monastrol-resistant cells. Mechanistic investigations suggested that upregulation of circRNA‑MTO1 suppressed cell viability, promoted monastrol-induced cell cytotoxicity and reversed monastrol resistance. Subsequently, Eg5 was identified as the functional target of circRNA‑MTO1, and MTO1 inhibited Eg5 protein level but not mRNA level. By treating with protein synthesis inhibitor cycloheximide (CHX), it was revealed that MTO1 did not affect the protein stability of Eg5. RNA-pull down experiments followed by mass spectrometry revealed that MTO1 interacted with tumor necrosis factor receptor associated factor 4 (TRAF4), and sequester TRAF4 from activating Eg5 translation, thereby inhibiting the Eg5 protein level. Taken together, the data reveal a regulatory mechanism by circRNA‑MTO1 to control cell viability and monastrol resistance in breast cancer cells.

References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Zhang B, Beeghly-Fadiel A, Long J and Zheng W: Genetic variants associated with breast-cancer risk: Comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol. 12:477–488. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Calaf GM, Zepeda AB, Castillo RL, Figueroa CA, Arias C, Figueroa E and Farías JG: Molecular aspects of breast cancer resistance to drugs (review). Int J Oncol. 47:437–445. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Chen W, Zheng R, Zeng H and Zhang S: The updated incidences and mortalities of major cancers in China, 2011. Chin J Cancer. 34:502–507. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Quasthoff S and Hartung HP: Chemotherapy-induced peripheral neuropathy. J Neurol. 249:9–17. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL and Mitchison TJ: Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science. 286:971–974. 1999. View Article : Google Scholar : PubMed/NCBI

7 

Kapoor TM, Mayer TU, Coughlin ML and Mitchison TJ: Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol. 150:975–988. 2000. View Article : Google Scholar : PubMed/NCBI

8 

Maliga Z, Kapoor TM and Mitchison TJ: Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. Chem Biol. 9:989–996. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Blangy A, Lane HA, d'Hérin P, Harper M, Kress M and Nigg EA: Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell. 83:1159–1169. 1995. View Article : Google Scholar : PubMed/NCBI

10 

Sharp DJ, Yu KR, Sisson JC, Sullivan W and Scholey JM: Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nat Cell Biol. 1:51–54. 1999. View Article : Google Scholar : PubMed/NCBI

11 

Sorek R and Cossart P: Prokaryotic transcriptomics: A new view on regulation, physiology and pathogenicity. Nat Rev Genet. 11:9–16. 2010. View Article : Google Scholar

12 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar :

14 

Li JH, Liu S, Zhou H, Qu LH and Yang JH: starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42D:D92–D97. 2014. View Article : Google Scholar

15 

Huang G, Li S, Yang N, Zou Y, Zheng D and Xiao T: Recent progress in circular RNAs in human cancers. Cancer Lett. 404:8–18. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Lasda E and Parker R: Circular RNAs: Diversity of form and function. RNA. 20:1829–1842. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Xu SY, Huang X and Cheong KL: Recent advances in marine algae polysaccharides: Isolation, structure, and activities. Mar Drugs. 15:152017. View Article : Google Scholar

19 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar

20 

Han D, Li J, Wang H, Su X, Hou J, Gu Y, Qian C, Lin Y, Liu X, Huang M, et al: Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 66:1151–1164. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Remmele W and Stegner HE: Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe. 8:138–140. 1987.PubMed/NCBI

22 

Schindelin J, Rueden CT, Hiner MC and Eliceiri KW: The ImageJ ecosystem: An open platform for biomedical image analysis. Mol Reprod Dev. 82:518–529. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Zhang L, Zhou F, García de Vinuesa A, de Kruijf EM, Mesker WE, Hui L, Drabsch Y, Li Y, Bauer A, Rousseau A, et al: TRAF4 promotes TGF-β receptor signaling and drives breast cancer metastasis. Mol Cell. 51:559–572. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Wang Z, Wang N, Li W, Liu P, Chen Q, Situ H, Zhong S, Guo L, Lin Y, Shen J, et al: Caveolin-1 mediates chemoresistance in breast cancer stem cells via β-catenin/ABCG2 signaling pathway. Carcinogenesis. 35:2346–2356. 2014. View Article : Google Scholar : PubMed/NCBI

25 

DeBonis S, Simorre JP, Crevel I, Lebeau L, Skoufias DA, Blangy A, Ebel C, Gans P, Cross R, Hackney DD, et al: Interaction of the mitotic inhibitor monastrol with human kinesin Eg5. Biochemistry. 42:338–349. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Yan Y, Sardana V, Xu B, Homnick C, Halczenko W, Buser CA, Schaber M, Hartman GD, Huber HE and Kuo LC: Inhibition of a mitotic motor protein: Where, how, and conformational consequences. J Mol Biol. 335:547–554. 2004. View Article : Google Scholar

27 

Sawin KE, LeGuellec K, Philippe M and Mitchison TJ: Mitotic spindle organization by a plus-end-directed microtubule motor. Nature. 359:540–543. 1992. View Article : Google Scholar : PubMed/NCBI

28 

Sashidhara KV, Avula SR, Sharma K, Palnati GR and Bathula SR: Discovery of coumarin-monastrol hybrid as potential antibreast tumor-specific agent. Eur J Med Chem. 60:120–127. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI

30 

Guo JU, Agarwal V, Guo H and Bartel DP: Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15:4092014. View Article : Google Scholar : PubMed/NCBI

31 

Huang YS, Jie N, Zou KJ and Weng Y: Expression profile of circular RNAs in human gastric cancer tissues. Mol Med Rep. 16:2469–2476. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Nair AA, Niu N, Tang X, Thompson KJ, Wang L, Kocher JP, Subramanian S and Kalari KR: Circular RNAs and their associations with breast cancer subtypes. Oncotarget. 7:80967–80979. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Suzuki T, Nagao A and Suzuki T: Human mitochondrial tRNAs: Biogenesis, function, structural aspects, and diseases. Annu Rev Genet. 45:299–329. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Wang X, Yan Q and Guan MX: Combination of the loss of cmnm5U34 with the lack of s2U34 modifications of tRNALys, tRNAGlu, and tRNAGln altered mitochondrial biogenesis and respiration. J Mol Biol. 395:1038–1048. 2010. View Article : Google Scholar

35 

Ding S, Xing N, Lu J, Zhang H, Nishizawa K, Liu S, Yuan X, Qin Y, Liu Y, Ogawa O, et al: Overexpression of Eg5 predicts unfavorable prognosis in non-muscle invasive bladder urothelial carcinoma. Int J Urol. 18:432–438. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Liu M, Wang X, Yang Y, Li D, Ren H, Zhu Q, Chen Q, Han S, Hao J and Zhou J: Ectopic expression of the microtubule-dependent motor protein Eg5 promotes pancreatic tumourigenesis. J Pathol. 221:221–228. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Wang Y, Wu X, Du M, Chen X, Ning X, Chen H, Wang S, Liu J, Liu Z, Li R, et al: Eg5 inhibitor YL001 induces mitotic arrest and inhibits tumor proliferation. Oncotarget. 8:42510–42524. 2017.PubMed/NCBI

38 

Zhang X, Wen Z, Sun L, Wang J, Song M, Wang E and Mi X: TRAF2 regulates the cytoplasmic/nuclear distribution of TRAF4 and its biological function in breast cancer cells. Biochem Biophys Res Commun. 436:344–348. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Chung JY, Park YC, Ye H and Wu H: All TRAFs are not created equal: Common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci. 115:679–688. 2002.PubMed/NCBI

40 

Kedinger V and Rio MC: TRAF4, the unique family member. Adv Exp Med Biol. 597:60–71. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Camilleri-Broët S, Cremer I, Marmey B, Comperat E, Viguié F, Audouin J, Rio MC, Fridman WH, Sautès-Fridman C and Régnier CH: TRAF4 overexpression is a common characteristic of human carcinomas. Oncogene. 26:142–147. 2007. View Article : Google Scholar

42 

Zhang X, Wen Z and Mi X: Expression and anti-apoptotic function of TRAF4 in human breast cancer MCF-7 cells. Oncol Lett. 7:411–414. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2018
Volume 53 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, Y., Dong, Y., Zhao, L., Su, L., & Luo, J. (2018). Circular RNA‑MTO1 suppresses breast cancer cell viability and reverses monastrol resistance through regulating the TRAF4/Eg5 axis. International Journal of Oncology, 53, 1752-1762. https://doi.org/10.3892/ijo.2018.4485
MLA
Liu, Y., Dong, Y., Zhao, L., Su, L., Luo, J."Circular RNA‑MTO1 suppresses breast cancer cell viability and reverses monastrol resistance through regulating the TRAF4/Eg5 axis". International Journal of Oncology 53.4 (2018): 1752-1762.
Chicago
Liu, Y., Dong, Y., Zhao, L., Su, L., Luo, J."Circular RNA‑MTO1 suppresses breast cancer cell viability and reverses monastrol resistance through regulating the TRAF4/Eg5 axis". International Journal of Oncology 53, no. 4 (2018): 1752-1762. https://doi.org/10.3892/ijo.2018.4485