Exogenous expression of miRNA-3613-3p causes APAF1 downregulation and affects several proteins involved in apoptosis in BE(2)-C human neuroblastoma cells

  • Authors:
    • Iwona Nowak
    • Elżbieta Boratyn
    • Małgorzata Durbas
    • Irena Horwacik
    • Hanna Rokita
  • View Affiliations

  • Published online on: July 31, 2018     https://doi.org/10.3892/ijo.2018.4509
  • Pages: 1787-1799
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNAs (miRNAs) are a class of small non‑coding RNAs involved in post‑transcriptional gene regulation. Furthermore, dysregulation of miRNA expression is an important factor in the pathogenesis of neuroblastoma. Our previous study identified that overexpression of monocyte chemoattractant protein‑induced protein 1 protein led to a significant downregulation of a novel miRNA molecule, miRNA‑3613‑3p. In the present study, the potential involvement of miRNA‑3613‑3p in the cell biology of neuroblastoma was investigated. It was identified that the expression of miRNA‑3613‑3p varies among a range of human neuroblastoma cell lines. As the delineation of the functions of a miRNA requires the identification of its target genes, seven putative mRNAs that may be regulated by miRNA‑3613‑3p were selected. Furthermore, it was identified that overexpression of miRNA‑3613‑3p causes significant downregulation of several genes exhibiting tumor suppressive potential [encoding apoptotic protease‑activating factor 1 (APAF1), Dicer, DNA fragmentation factor subunit β, von Hippel‑Lindau protein and neurofibromin 1] in BE(2)‑C human neuroblastoma cells. APAF1 mRNA was the most significantly decreased transcript in the cells with miRNA‑3613‑3p overexpression. In accordance with the aforementioned results, the downregulation of cleaved caspase-9 and lack of activation of executive caspases in BE(2)‑C cells following miRNA‑3613‑3p overexpression was observed. The results of the present study suggest a potential underlying molecular mechanism of apoptosis inhibition via APAF1 downregulation in human neuroblastoma BE(2)‑C cells with miRNA‑3613‑3p overexpression.

References

1 

Louis CU and Shohet JM: Neuroblastoma: Molecular pathogenesis and therapy. Annu Rev Med. 66:49–63. 2015. View Article : Google Scholar :

2 

Maris JM, Hogarty MD, Bagatell R and Cohn SL: Neuroblastoma. Lancet. 369:2106–2120. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF, Nakagawara A, Berthold F, Schleiermacher G, Park JR, et al: Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol. 33:3008–3017. 2015. View Article : Google Scholar : PubMed/NCBI

4 

de Carvalho IN, de Freitas RM and Vargas FR: Translating microRNAs into biomarkers: What is new for pediatric cancer? Med Oncol. 33:492016. View Article : Google Scholar : PubMed/NCBI

5 

Zhi F, Wang R, Wang Q, Xue L, Deng D, Wang S and Yang Y: MicroRNAs in neuroblastoma: Small-sized players with a large impact. Neurochem Res. 39:613–623. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Mei H, Lin ZY and Tong QS: The roles of microRNAs in neuroblastoma. World J Pediatr. 10:10–16. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Boratyn E, Nowak I, Horwacik I, Durbas M, Mistarz A, Kukla M, Kaczówka P, Łastowska M, Jura J and Rokita H: Monocyte chemoattractant protein-induced protein 1 overexpression modulates transcriptome, including microRNA, in human neuroblastoma cells. J Cell Biochem. 117:694–707. 2016. View Article : Google Scholar

8 

Liu H, Chen G, Liang M, Qin H, Rong J, Yao J and Wu Z: Atrial fibrillation alters the microRNA expression profiles of the left atria of patients with mitral stenosis. BMC Cardiovasc Disord. 14:102014. View Article : Google Scholar : PubMed/NCBI

9 

Ji H, Chen M, Greening DW, He W, Rai A, Zhang W and Simpson RJ: Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct miRNA-enrichment signatures. PLoS One. 9:e1103142014. View Article : Google Scholar : PubMed/NCBI

10 

Wang N, Bu R, Duan Z, Zhang X, Chen P, Li Z, Wu J, Cai G and Chen X: Profiling and initial validation of urinary microRNAs as biomarkers in IgA nephropathy. PeerJ. 3:e9902015. View Article : Google Scholar : PubMed/NCBI

11 

Pu Q, Huang Y, Lu Y, Peng Y, Zhang J, Feng G, Wang C, Liu L and Dai Y: Tissue-specific and plasma microRNA profiles could be promising biomarkers of histological classification and TNM stage in non-small cell lung cancer. Thorac Cancer. 7:348–354. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Kumar S, Vijayan M and Reddy PH: MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer's disease. Hum Mol Genet. 26:3808–3822. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Singh A, Rooge S, Varshney A, Vasudevan M, Bhardwaj A, Venugopal S, Trehanpati N, Kumar M, Geffers R, Kumar V, et al: Global micro RNA expression profiling in the liver biopsies of Hepatitis B virus infected patients suggests specific miRNA signatures for viral persistence and hepatocellular injury. Hepatology. 67:1695–1709. 2017. View Article : Google Scholar

14 

Zhang D, Liu E, Kang J, Yang X and Liu H: MiR-3613-3p affects cell proliferation and cell cycle in hepatocellular carcinoma. Oncotarget. 8:93014–93028. 2017.PubMed/NCBI

15 

Zhang Y, Kang R, Liu W, Yang Y, Ding R, Huang Q, Meng J, Xiong L and Guo Z: Identification and analysis of p53-mediated competing endogenous RNA network in human hepatocellular carcinoma. Int J Biol Sci. 13:1213–1221. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Mizgalska D, Wegrzyn P, Murzyn K, Kasza A, Koj A and Jura J, Jarzab B and Jura J: Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1beta mRNA. FEBS J. 276:7386–7399. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Boratyn E, Nowak I, Durbas M, Horwacik I, Sawicka A and Rokita H: MCPIP1 exogenous overexpression inhibits pathways regulating MYCN oncoprotein stability in neuroblastoma. J Cell Biochem. 118:1741–1755. 2017. View Article : Google Scholar

18 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

19 

Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ and Klenk DC: Measurement of protein using bicinchoninic acid. Anal Biochem. 150:76–85. 1985. View Article : Google Scholar : PubMed/NCBI

20 

Horwacik I, Durbas M, Boratyn E, Węgrzyn P and Rokita H: Targeting GD2 ganglioside and aurora A kinase as a dual strategy leading to cell death in cultures of human neuroblastoma cells. Cancer Lett. 341:248–264. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T and Hatzigeorgiou AG: DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 43:W460–6. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Paraskevopoulou M, Georgakilas G, Kostoulas N, Vlachos I, Vergoulis T, Reczko M, Filippidis C, Dalamagas T and Hatzigeorgiou A: DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 41:W169–W173. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Dweep H and Gretz N: miRWalk2.0: A comprehensive atlas of microRNA-target interactions. Nat Methods. 12:6972015. View Article : Google Scholar : PubMed/NCBI

24 

Rehmsmeier M, Steffen P, Hochsmann M and Giegerich R: Fast and effective prediction of microRNA/target duplexes. RNA. 10:1507–1517. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Kertesz M, Iovino N, Unnerstall U, Gaul U and Segal E: The role of site accessibility in microRNA target recognition. Nat Genet. 39:1278–1284. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. eLife. 4:e050052015. View Article : Google Scholar :

27 

Hessvik NP, Phuyal S, Brech A, Sandvig K and Llorente A: Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochim Biophys Acta. 1819:1154–1163. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Chiyomaru T, Yamamura S, Fukuhara S, Hidaka H, Majid S, Saini S, Arora S, Deng G, Shahryari V, Chang I, et al: Genistein up-regulates tumor suppressor microRNA-574–3p in prostate cancer. PLoS One. 8:e589292013. View Article : Google Scholar

29 

Sohn EJ, Won G, Lee J, Lee S and Kim SH: Upregulation of miRNA3195 and miRNA374b mediates the anti-angiogenic properties of melatonin in hypoxic PC-3 prostate cancer cells. J Cancer. 6:19–28. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Mino T, Murakawa Y, Fukao A, Vandenbon A, Wessels HH, Ori D, Uehata T, Tartey S, Akira S, Suzuki Y, et al: Regnase-1 and Roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell. 161:1058–1073. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Witkos TM, Koscianska E and Krzyzosiak WJ: Practical aspects of microRNA target prediction. Curr Mol Med. 11:93–109. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Shu J, Xia Z, Li L, Liang ET, Slipek N, Shen D, Foo J, Subramanian S and Steer CJ: Dose-dependent differential mRNA target selection and regulation by let-7a-7f and miR-17-92 cluster microRNAs. RNA Biol. 9:1275–1287. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Lin RJ, Lin YC, Chen J, Kuo HH, Chen YY, Diccianni MB, London WB, Chang CH and Yu AL: microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res. 70:7841–7850. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Cecconi F: Apaf1 and the apoptotic machinery. Cell Death Differ. 6:1087–1098. 1999. View Article : Google Scholar : PubMed/NCBI

35 

Riss T, Moravec R, Niles A, Duellman S, Benink H, Worzella T and Minor L: Cell Viability Assays in Assay Guidance Manual. Sittampalam G, et al: Eli Lilly & Company and the National Center for Advancing Translational Sciences Bethesta, MD: 2013

36 

Stallings RL: MicroRNA involvement in the pathogenesis of neuroblastoma: Potential for microRNA mediated therapeutics. Curr Pharm Des. 15:456–462. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Shalaby T, Fiaschetti G, Baumgartner M and Grotzer MA: Significance and therapeutic value of miRNAs in embryonal neural tumors. Molecules. 19:5821–5862. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Tivnan A, Orr WS, Gubala V, Nooney R, Williams DE, McDonagh C, Prenter S, Harvey H, Domingo-Fernández R, Bray IM, et al: Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One. 7:e381292012. View Article : Google Scholar : PubMed/NCBI

39 

Verissimo CS, Molenaar JJ, Fitzsimons CP and Vreugdenhil E: Neuroblastoma therapy: What is in the pipeline? Endocr Relat Cancer. 18:R213–R231. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M, Boldrini R, Donfrancesco A, Federici V, Giacomini P, et al: Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One. 3:e22362008. View Article : Google Scholar : PubMed/NCBI

41 

Skalniak A, Boratyn E, Tyrkalska SD, Horwacik I, Durbas M, Lastowska M, Jura J and Rokita H: Expression of the monocyte chemotactic protein-1-induced protein 1 decreases human neuro-blastoma cell survival. Oncol Rep. 31:2385–2392. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Baumann Kubetzko FB, Di Paolo C, Maag C, Meier R, Schäfer BW, Betts DR, Stahel RA and Himmelmann A: The PAX5 oncogene is expressed in N-type neuroblastoma cells and increases tumorigenicity of a S-type cell line. Carcinogenesis. 25:1839–1846. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Voigt A, Hartmann P and Zintl F: Differentiation, proliferation and adhesion of human neuroblastoma cells after treatment with retinoic acid. Cell Adhes Commun. 7:423–440. 2000. View Article : Google Scholar : PubMed/NCBI

44 

Ross R: Cellular heterogeneity. Neuroblastoma. Cheung N and Cohn S: Springer; Berlin: pp. 55–60. 2005, View Article : Google Scholar

45 

Liu JA and Cheung M: Neural crest stem cells and their potential therapeutic applications. Dev Biol. 419:199–216. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Judson H, van Roy N, Strain L, Vandesompele J, Van Gele M, Speleman F and Bonthron DT: Structure and mutation analysis of the gene encoding DNA fragmentation factor 40 (caspase-activated nuclease), a candidate neuroblastoma tumour suppressor gene. Hum Genet. 106:406–413. 2000. View Article : Google Scholar : PubMed/NCBI

47 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Campioni M, Santini D, Tonini G, Murace R, Dragonetti E, Spugnini EP and Baldi A: Role of Apaf-1, a key regulator of apoptosis, in melanoma progression and chemoresistance. Exp Dermatol. 14:811–818. 2005. View Article : Google Scholar : PubMed/NCBI

49 

Murata H, Tajima N, Nagashima Y, Yao M, Baba M, Goto M, Kawamoto S, Yamamoto I, Okuda K and Kanno H: Von Hippel-Lindau tumor suppressor protein transforms human neuroblastoma cells into functional neuron-like cells. Cancer Res. 62:7004–7011. 2002.PubMed/NCBI

50 

Hoebeeck J, Vandesompele J, Nilsson H, De Preter K, Van Roy N, De Smet E, Yigit N, De Paepe A, Laureys G, Påhlman S, et al: The von Hippel-Lindau tumor suppressor gene expression level has prognostic value in neuroblastoma. Int J Cancer. 119:624–629. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Hölzel M, Huang S, Koster J, Ora I, Lakeman A, Caron H, Nijkamp W, Xie J, Callens T, Asgharzadeh S, et al: NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell. 142:218–229. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Savitskaya MA and Onishchenko GE: Mechanisms of apoptosis. biochemistry (Mosc). 80:1393–1405. 2015. View Article : Google Scholar

Related Articles

Journal Cover

October 2018
Volume 53 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Nowak, I., Boratyn, E., Durbas, M., Horwacik, I., & Rokita, H. (2018). Exogenous expression of miRNA-3613-3p causes APAF1 downregulation and affects several proteins involved in apoptosis in BE(2)-C human neuroblastoma cells. International Journal of Oncology, 53, 1787-1799. https://doi.org/10.3892/ijo.2018.4509
MLA
Nowak, I., Boratyn, E., Durbas, M., Horwacik, I., Rokita, H."Exogenous expression of miRNA-3613-3p causes APAF1 downregulation and affects several proteins involved in apoptosis in BE(2)-C human neuroblastoma cells". International Journal of Oncology 53.4 (2018): 1787-1799.
Chicago
Nowak, I., Boratyn, E., Durbas, M., Horwacik, I., Rokita, H."Exogenous expression of miRNA-3613-3p causes APAF1 downregulation and affects several proteins involved in apoptosis in BE(2)-C human neuroblastoma cells". International Journal of Oncology 53, no. 4 (2018): 1787-1799. https://doi.org/10.3892/ijo.2018.4509