Mechanisms underlying the effects of stress on tumorigenesis and metastasis (Review)

  • Authors:
    • Zhaozhou Zhang
    • Yan Wang
    • Qi Li
  • View Affiliations

  • Published online on: September 24, 2018     https://doi.org/10.3892/ijo.2018.4570
  • Pages: 2332-2342
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Stress is one of the fundamental survival mechanisms in nature. Although chronic or long-lasting stress can be detrimental to health, acute or short-term stress can have health benefits. The aim of the present review was to address the complexity and significance of stress in tumorigenesis. The review covers an evaluation of previously used and reported experimental animal models of stress, as well as the effects of stress on the neuroendocrine system, immune function, gut microbiota, and inflammation and multidrug resistance, all of which are closely associated with cancer occurrence, progression and treatment. The review concludes that understanding the efficacy of stress management (prevention and rehabilitation) is crucial to the development of comprehensive and individualized strategies for cancer prevention and treatment.

References

1 

Dhabhar FS and McEwen BS: Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: A potential role for leukocyte trafficking. Brain Behav Immun. 11:286–306. 1997. View Article : Google Scholar

2 

Amin SN, El-Aidi AA, Ali MM, Attia YM and Rashed LA: Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: Implications for memory and behavior. Neuromolecular Med. 17:121–136. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Charmandari E, Tsigos C and Chrousos G: Endocrinology of the stress response. Annu Rev Physiol. 67:259–284. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Gunnar M and Quevedo K: The neurobiology of stress and development. Annu Rev Psychol. 58:145–173. 2007. View Article : Google Scholar

5 

Krizanova O, Babula P and Pacak K: Stress, catecholaminergic system and cancer. Stress. 19:419–428. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Hering D, Lachowska K and Schlaich M: Role of the sympathetic nervous system in stress-mediated cardiovascular disease. Curr Hypertens Rep. 17:802015. View Article : Google Scholar : PubMed/NCBI

7 

Dhabhar FS, McEwen BS and Spencer RL: Stress response, adrenal steroid receptor levels and corticosteroid-binding globulin levels - a comparison between Sprague-Dawley, Fischer 344 and Lewis rats. Brain Res. 616:89–98. 1993. View Article : Google Scholar : PubMed/NCBI

8 

Dhabhar FS, McEwen BS and Spencer RL: Adaptation to prolonged or repeated stress - comparison between rat strains showing intrinsic differences in reactivity to acute stress. Neuroendocrinology. 65:360–368. 1997. View Article : Google Scholar : PubMed/NCBI

9 

Ambarish V, Chandrashekara S and Suresh KP: Moderate regular exercises reduce inflammatory response for physical stress. Indian J Physiol Pharmacol. 56:7–14. 2012.PubMed/NCBI

10 

Clague J and Bernstein L: Physical activity and cancer. Curr Oncol Rep. 14:550–558. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Dhabhar FS: Effects of stress on immune function: The good, the bad, and the beautiful. Immunol Res. 58:193–210. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Lagraauw HM, Kuiper J and Bot I: Acute and chronic psychological stress as risk factors for cardiovascular disease: Insights gained from epidemiological, clinical and experimental studies. Brain Behav Immun. 50:18–30. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Muffly LS, Hlubocky FJ, Khan N, Wroblewski K, Breitenbach K, Gomez J, McNeer JL, Stock W and Daugherty CK: Psychological morbidities in adolescent and young adult blood cancer patients during curative-intent therapy and early survivorship. Cancer. 122:954–961. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Cohen L, Cole SW, Sood AK, Prinsloo S, Kirschbaum C, Arevalo JM, Jennings NB, Scott S, Vence L, Wei Q, et al: Depressive symptoms and cortisol rhythmicity predict survival in patients with renal cell carcinoma: Role of inflammatory signaling. PLoS One. 7:e423242012. View Article : Google Scholar : PubMed/NCBI

15 

Shan T, Ma J, Ma Q, Guo K, Guo J, Li X, Li W, Liu J, Huang C, Wang F, et al: β2-AR-HIF-1α: A novel regulatory axis for stress-induced pancreatic tumor growth and angiogenesis. Curr Mol Med. 13:1023–1034. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Iwata M, Ota KT, Li XY, Sakaue F, Li N, Dutheil S, Banasr M, Duric V, Yamanashi T, Kaneko K, et al: Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry. 80:12–22. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Agarwal SK and Marshall GD Jr: Stress effects on immunity and its application to clinical immunology. Clin Exp Allergy. 31:25–31. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Yin X, Guven N and Dietis N: Stress-based animal models of depression: Do we actually know what we are doing? Brain Res. 1652:30–42. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Heinrichs SC and Koob GF: Application of experimental stressors in laboratory rodents. Curr Protoc Neurosci. Chapter 8: Unit8.4. 2006. View Article : Google Scholar

20 

Zorzet S, Perissin L, Rapozzi V and Giraldi T: Restraint stress reduces the antitumor efficacy of cyclophosphamide in tumor-bearing mice. Brain Behav Immun. 12:23–33. 1998. View Article : Google Scholar : PubMed/NCBI

21 

Nukina H, Sudo N, Aiba Y, Oyama N, Koga Y and Kubo C: Restraint stress elevates the plasma interleukin-6 levels in germ-free mice. J Neuroimmunol. 115:46–52. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Willner P: The validity of animal models of predisposition to depression. Behav Pharmacol. 13:169–188. 2002. View Article : Google Scholar : PubMed/NCBI

23 

Glaser R and Kiecolt-Glaser JK: Stress-induced immune dysfunction: Implications for health. Nat Rev Immunol. 5:243–251. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Dhabhar FS, Saul AN, Daugherty C, Holmes TH, Bouley DM and Oberyszyn TM: Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma. Brain Behav Immun. 24:127–137. 2010. View Article : Google Scholar

25 

Eng JW, Kokolus KM, Reed CB, Hylander BL, Ma WW and Repasky EA: A nervous tumor microenvironment: The impact of adrenergic stress on cancer cells, immunosuppression, and immunotherapeutic response. Cancer Immunol Immunother. 63:1115–1128. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Frick LR, Rapanelli M, Bussmann UA, Klecha AJ, Arcos ML, Genaro AM and Cremaschi GA: Involvement of thyroid hormones in the alterations of T-cell immunity and tumor progression induced by chronic stress. Biol Psychiatry. 65:935–942. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Volpi S, Rabadan-Diehl C and Aguilera G: Vasopressinergic regulation of the hypothalamic pituitary adrenal axis and stress adaptation. Stress. 7:75–83. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Meltzer HY, Lowy MT and Koenig JI: The hypothalamic-pituitary-adrenal axis in depression. Adv Biochem Psychopharmacol. 43:165–182. 1987.PubMed/NCBI

29 

Chrousos GP: Ultradian, circadian, and stress-related hypothalamic-pituitary-adrenal axis activity - a dynamic digital-to-analog modulation. Endocrinology. 139:437–440. 1998. View Article : Google Scholar : PubMed/NCBI

30 

Sephton S and Spiegel D: Circadian disruption in cancer: A neuroendocrine-immune pathway from stress to disease? Brain Behav Immun. 17:321–328. 2003. View Article : Google Scholar : PubMed/NCBI

31 

McEwen BS: Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol Rev. 87:873–904. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Moreno-Smith M, Lutgendorf SK and Sood AK: Impact of stress on cancer metastasis. Future Oncol. 6:1863–1881. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Gündisch S, Boeckeler E, Behrends U, Amtmann E, Ehrhardt H and Jeremias I: Glucocorticoids augment survival and proliferation of tumor cells. Anticancer Res. 32:4251–4261. 2012.PubMed/NCBI

34 

Wang HM, Liao ZX, Komaki R, Welsh JW, O’Reilly MS, Chang JY, Zhuang Y, Levy LB, Lu C and Gomez DR: Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann Oncol. 24:1312–1319. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Wulsin AC, Wick-Carlson D, Packard BA, Morano R and Herman JP: Adolescent chronic stress causes hypothalamo-pituitary-adrenocortical hypo-responsiveness and depression-like behavior in adult female rats. Psychoneuroendocrinology. 65:109–117. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Bortolato B, Hyphantis TN, Valpione S, Perini G, Maes M, Morris G, Kubera M, Köhler CA, Fernandes BS, Stubbs B, et al: Depression in cancer: The many biobehavioral pathways driving tumor progression. Cancer Treat Rev. 52:58–70. 2017. View Article : Google Scholar

37 

Zhao L, Xu J, Liang F, Li A, Zhang Y and Sun J: Effect of chronic psychological stress on liver metastasis of colon cancer in mice. PLoS One. 10:e01399782015. View Article : Google Scholar : PubMed/NCBI

38 

Xie H, Li C, He Y, Griffin R, Ye Q and Li L: Chronic stress promotes oral cancer growth and angiogenesis with increased circulating catecholamine and glucocorticoid levels in a mouse model. Oral Oncol. 51:991–997. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Liu J, Deng GH, Zhang J, Wang Y, Xia XY, Luo XM, Deng YT, He SS, Mao YY, Peng XC, et al: The effect of chronic stress on anti-angiogenesis of sunitinib in colorectal cancer models. Psychoneuroendocrinology. 52:130–142. 2015. View Article : Google Scholar

40 

Elefteriou F: Chronic stress, sympathetic activation and skeletal metastasis of breast cancer cells. Bonekey Rep. 4:6932015. View Article : Google Scholar : PubMed/NCBI

41 

Moreno-Smith M, Lu C, Shahzad MM, Pena GN, Allen JK, Stone RL, Mangala LS, Han HD, Kim HS, Farley D, et al: Dopamine blocks stress-mediated ovarian carcinoma growth. Clin Cancer Res. 17:3649–3659. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Moreno-Smith M, Lee SJ, Lu C, Nagaraja AS, He G, Rupaimoole R, Han HD, Jennings NB, Roh JW, Nishimura M, et al: Biologic effects of dopamine on tumor vasculature in ovarian carcinoma. Neoplasia. 15:502–510. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Borcherding DC, Tong W, Hugo ER, Barnard DF, Fox S, LaSance K, Shaughnessy E and Ben-Jonathan N: Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer. Oncogene. 35:3103–3113. 2016. View Article : Google Scholar

44 

Peters MA, Walenkamp AM, Kema IP, Meijer C, de Vries EG and Oosting SF: Dopamine and serotonin regulate tumor behavior by affecting angiogenesis. Drug Resist Updat. 17:96–104. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Barbieri A, Palma G, Rosati A, Giudice A, Falco A, Petrillo A, Petrillo M, Bimonte S, Di Benedetto M, Esposito G, et al: Role of endothelial nitric oxide synthase (eNOS) in chronic stress-promoted tumour growth. J Cell Mol Med. 16:920–926. 2012. View Article : Google Scholar

46 

Partecke LI, Speerforck S, Käding A, Seubert F, Kühn S, Lorenz E, Schwandke S, Sendler M, Kessler W, Trung DN, et al: Chronic stress increases experimental pancreatic cancer growth, reduces survival and can be antagonised by beta-adrenergic receptor blockade. Pancreatology. 16:423–433. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Feng Z, Liu L, Zhang C, Zheng T, Wang J, Lin M, Zhao Y, Wang X, Levine AJ and Hu W: Chronic restraint stress attenuates p53 function and promotes tumorigenesis. Proc Natl Acad Sci USA. 109:7013–7018. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Gao J, Gao G, Zhang Y and Wang F: Proteomic analysis of human epithelial ovarian cancer xenografts in immunodeficient mice exposed to chronic psychological stress. Sci China Life Sci. 54:112–120. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Turnbull AV and Rivier CL: Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: Actions and mechanisms of action. Physiol Rev. 79:1–71. 1999. View Article : Google Scholar : PubMed/NCBI

50 

Schwab CL, Fan R, Zheng Q, Myers LP, Hebert P and Pruett SB: Modeling and predicting stress-induced immunosuppression in mice using blood parameters. Toxicol Sci. 83:101–113. 2005. View Article : Google Scholar

51 

Dhabhar FS, Malarkey WB, Neri E and McEwen BS: Stress-induced redistribution of immune cells - from barracks to boulevards to battlefields: A tale of three hormones - Curt Richter Award winner. Psychoneuroendocrinology. 37:1345–1368. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Barbieri A, Bimonte S, Palma G, Luciano A, Rea D, Giudice A, Scognamiglio G, La Mantia E, Franco R, Perdonà S, et al: The stress hormone norepinephrine increases migration of prostate cancer cells in vitro and in vivo. Int J Oncol. 47:527–534. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Nilsson MB, Sun H, Diao L, Tong P, Liu D, Li L, Fan Y, Poteete A, Lim SO, Howells K, et al: Stress hormones promote EGFR inhibitor resistance in NSCLC: Implications for combinations with β-blockers. Sci Transl Med. 9:92017. View Article : Google Scholar

54 

Kim-Fuchs C, Le CP, Pimentel MA, Shackleford D, Ferrari D, Angst E, Hollande F and Sloan EK: Chronic stress accelerates pancreatic cancer growth and invasion: A critical role for beta-adrenergic signaling in the pancreatic microenvironment. Brain Behav Immun. 40:40–47. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Nagaraja AS, Sadaoui NC, Dorniak PL, Lutgendorf SK and Sood AK: SnapShot: Stress and Disease. Cell Metab. 23:388–388.e1. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Dhabhar FS: Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology. Neuroimmunomodulation. 16:300–317. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Glaser R, MacCallum RC, Laskowski BF, Malarkey WB, Sheridan JF and Kiecolt-Glaser JK: Evidence for a shift in the Th-1 to Th-2 cytokine response associated with chronic stress and aging. J Gerontol A Biol Sci Med Sci. 56:M477–M482. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Ochoa CE, Mirabolfathinejad SG, Ruiz VA, Evans SE, Gagea M, Evans CM, Dickey BF and Moghaddam SJ: Interleukin 6, but not T helper 2 cytokines, promotes lung carcinogenesis. Cancer Prev Res (Phila). 4:51–64. 2011. View Article : Google Scholar

59 

Divyashree S, Sarjan HN and Yajurvedi HN: Effects of long-term chronic stress on the lymphoid organs and blood l. Can J Zool. 94:137–143. 2015. View Article : Google Scholar

60 

Frick LR, Arcos ML, Rapanelli M, Zappia MP, Brocco M, Mongini C, Genaro AM and Cremaschi GA: Chronic restraint stress impairs T-cell immunity and promotes tumor progression in mice. Stress. 12:134–143. 2009. View Article : Google Scholar

61 

Li H, Zhao J, Chen M, Tan Y, Yang X, Caudle Y and Yin D: Toll-like receptor 9 is required for chronic stress-induced immune suppression. Neuroimmunomodulation. 21:1–7. 2014. View Article : Google Scholar :

62 

Lakshmi Narendra B, Eshvendar Reddy K, Shantikumar S and Ramakrishna S: Immune system: a double-edged sword in cancer. Inflamm Res. 62:823–834. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Hunzeker JT, Elftman MD, Mellinger JC, Princiotta MF, Bonneau RH, Truckenmiller ME and Norbury CC: A marked reduction in priming of cytotoxic CD8+ T cells mediated by stress-induced glucocorticoids involves multiple deficiencies in cross-presentation by dendritic cells. J Immunol. 186:183–194. 2011. View Article : Google Scholar

64 

Kour K and Bani S: Augmentation of immune response by chicoric acid through the modulation of CD28/CTLA-4 and Th1 pathway in chronically stressed mice. Neuropharmacology. 60:852–860. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Lutgendorf SK, Sood AK, Anderson B, McGinn S, Maiseri H, Dao M, Sorosky JI, De Geest K, Ritchie J and Lubaroff DM: Social support, psychological distress, and natural killer cell activity in ovarian cancer. J Clin Oncol. 23:7105–7113. 2005. View Article : Google Scholar : PubMed/NCBI

66 

Reiche EM, Nunes SO and Morimoto HK: Stress, depression, the immune system, and cancer. Lancet Oncol. 5:617–625. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Nakatani Y, Amano T and Takeda H: Corticosterone suppresses the proliferation of RAW264.7 macrophage cells via glucocor-ticoid, but not mineralocorticoid, receptor. Biol Pharm Bull. 36:592–601. 2013. View Article : Google Scholar

68 

Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, Arevalo JM, Morizono K, Karanikolas BD, Wu L, et al: The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 70:7042–7052. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Schmieder A, Michel J, Schönhaar K, Goerdt S and Schledzewski K: Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol. 22:289–297. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Armaiz-Pena GN, Gonzalez-Villasana V, Nagaraja AS, Rodriguez-Aguayo C, Sadaoui NC, Stone RL, Matsuo K, Dalton HJ, Previs RA, Jennings NB, et al: Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth. Oncotarget. 6:4266–4273. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Roberts DD, Miller TW, Rogers NM, Yao M and Isenberg JS: The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47. Matrix Biol. 31:162–169. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY, George BM, Markovic M, Ring NG, Tsai JM, et al: Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol. 19:76–84. 2018. View Article : Google Scholar :

73 

Hanke N, Alizadeh D, Katsanis E and Larmonier N: Dendritic cell tumor killing activity and its potential applications in cancer immunotherapy. Crit Rev Immunol. 33:1–21. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Wu W, Sun M, Zhang HP, Chen T, Wu R, Liu C, Yang G, Geng XR, Feng BS, Liu Z, et al: Prolactin mediates psychological stress-induced dysfunction of regulatory T cells to facilitate intestinal inflammation. Gut. 63:1883–1892. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Dhabhar FS, Satoskar AR, Bluethmann H, David JR and McEwen BS: Stress-induced enhancement of skin immune function: A role for gamma interferon. Proc Natl Acad Sci USA. 97:2846–2851. 2000. View Article : Google Scholar : PubMed/NCBI

76 

Dhabhar FS and Viswanathan K: Short-term stress experienced at time of immunization induces a long-lasting increase in immunologic memory. Am J Physiol Regul Integr Comp Physiol. 289:R738–R744. 2005. View Article : Google Scholar : PubMed/NCBI

77 

Levi B, Benish M, Goldfarb Y, Sorski L, Melamed R, Rosenne E and Ben-Eliyahu S: Continuous stress disrupts immunostimulatory effects of IL-12. Brain Behav Immun. 25:727–735. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Lopes RP, Grassi-Oliveira R, de Almeida LR, Stein LM, Luz C, Teixeira AL and Bauer ME: Neuroimmunoendocrine interactions in patients with recurrent major depression, increased early life stress and long-standing posttraumatic stress disorder symptoms. Neuroimmunomodulation. 19:33–42. 2012. View Article : Google Scholar

79 

Dhabhar FS and McEwen BS: Stress-induced enhancement of antigen-specific cell-mediated immunity. J Immunol. 156:2608–2615. 1996.PubMed/NCBI

80 

Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB and Achen MG: Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer. 14:159–172. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Le CP, Nowell CJ, Kim-Fuchs C, Botteri E, Hiller JG, Ismail H, Pimentel MA, Chai MG, Karnezis T, Rotmensz N, et al: Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun. 7:106342016. View Article : Google Scholar : PubMed/NCBI

82 

Boleij A and Tjalsma H: Gut bacteria in health and disease: A survey on the interface between intestinal microbiology and colorectal cancer. Biol Rev Camb Philos Soc. 87:701–730. 2012. View Article : Google Scholar : PubMed/NCBI

83 

O’Toole PW: Gut microbiota and aging. Science. 350:1214–1215. 2015. View Article : Google Scholar

84 

Rook GAW, Raison CL and Lowry CA: Microbiota, immuno-regulatory old friends and psychiatric disorders. Adv Exp Med Biol. 817:319–356. 2014. View Article : Google Scholar

85 

Penders J, Gerhold K, Stobberingh EE, Thijs C, Zimmermann K, Lau S and Hamelmann E: Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J Allergy Clin Immunol. 132:601–607.e8. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, Bringer MA, Pezet D and Bonnet M: Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 22:501–518. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Paul B, Barnes S, Demark-Wahnefried W, Morrow C, Salvador C, Skibola C and Tollefsbol TO: Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenetics. 7:1122015. View Article : Google Scholar : PubMed/NCBI

88 

Berni Canani R, Di Costanzo M and Leone L: The epigenetic effects of butyrate: Potential therapeutic implications for clinical practice. Clin Epigenetics. 4:42012. View Article : Google Scholar : PubMed/NCBI

89 

Yamamoto ML, Maier I, Dang AT, Berry D, Liu J, Ruegger PM, Yang JI, Soto PA, Presley LL, Reliene R, et al: Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. Cancer Res. 73:4222–4232. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, et al: Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 461:1282–1286. 2009. View Article : Google Scholar : PubMed/NCBI

91 

Garrett WS: Cancer and the microbiota. Science. 348:80–86. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, et al: Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 342:967–970. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C and Koga Y: Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 558:263–275. 2004. View Article : Google Scholar : PubMed/NCBI

95 

Luna RA and Foster JA: Gut brain axis: Diet microbiota interactions and implications for modulation of anxiety and depression. Curr Opin Biotechnol. 32:35–41. 2015. View Article : Google Scholar

96 

Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R and Rudi K: Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 26:1155–1162. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Daugé V, Naudon L and Rabot S: Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 42:207–217. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Liang S, Wang T, Hu X, Luo J, Li W, Wu X, Duan Y and Jin F: Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience. 310:561–577. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Xu D, Gao J, Gillilland M III, Wu X, Song I, Kao JY and Owyang C: Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology. 146:484–96.e4. 2014. View Article : Google Scholar :

100 

Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, Houdeau E, Fioramonti J, Bueno L and Theodorou V: Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 37:1885–1895. 2012. View Article : Google Scholar : PubMed/NCBI

101 

Seidel DV, Azcárate-Peril MA, Chapkin RS and Turner ND: Shaping functional gut microbiota using dietary bioactives to reduce colon cancer risk. Semin Cancer Biol. 46:191–204. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar

103 

Balkwill FR and Mantovani A: Cancer-related inflammation: Common themes and therapeutic opportunities. Semin Cancer Biol. 22:33–40. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

105 

Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C and Flavell RA: Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 13:759–771. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Aggarwal BB, Vijayalekshmi RV and Sung B: Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 15:425–430. 2009. View Article : Google Scholar : PubMed/NCBI

107 

Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, et al: Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 12:939–944. 2006. View Article : Google Scholar : PubMed/NCBI

108 

Armaiz-Pena GN, Cole SW, Lutgendorf SK and Sood AK: Neuroendocrine influences on cancer progression. Brain Behav Immun. 30(Suppl): S19–S25. 2013. View Article : Google Scholar

109 

Kyrou I, Tsigos C, Seedorf K and Ferré P: Stress hormones: Physiological stress and regulation of metabolism. Curr Opin Pharmacol. 9:787–793. 2009. View Article : Google Scholar : PubMed/NCBI

110 

Lu XT, Liu YF, Zhao L, Li WJ, Yang RX, Yan FF, Zhao YX and Jiang F: Chronic psychological stress induces vascular inflammation in rabbits. Stress. 16:87–98. 2013. View Article : Google Scholar

111 

Ahmad SF, Zoheir KM, Ansari MA, Korashy HM, Bakheet SA, Ashour AE and Attia SM: Stimulation of the histamine 4 receptor with 4-methylhistamine modulates the effects of chronic stress on the Th1/Th2 cytokine balance. Immunobiology. 220:341–349. 2015. View Article : Google Scholar

112 

Powell ND, Tarr AJ and Sheridan JF: Psychosocial stress and inflammation in cancer. Brain Behav Immun. 30(Suppl): S41–S47. 2013. View Article : Google Scholar

113 

Zitvogel L, Kepp O, Galluzzi L and Kroemer G: Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol. 13:343–351. 2012. View Article : Google Scholar : PubMed/NCBI

114 

Müzes G and Sipos F: Inflammasome, inflammation and cancer: An interrelated pathobiological triad. Curr Drug Targets. 16:249–257. 2015. View Article : Google Scholar

115 

Dunn JH, Ellis LZ and Fujita M: Inflammasomes as molecular mediators of inflammation and cancer: Potential role in melanoma. Cancer Lett. 314:24–33. 2012. View Article : Google Scholar

116 

Shahzad MM, Arevalo JM, Armaiz-Pena GN, Lu C, Stone RL, Moreno-Smith M, Nishimura M, Lee JW, Jennings NB, Bottsford-Miller J, et al: Stress effects on FosB- and interleukin-8 (IL8)-driven ovarian cancer growth and metastasis. J Biol Chem. 285:35462–35470. 2010. View Article : Google Scholar : PubMed/NCBI

117 

Cosci F, Fava GA and Sonino N: Mood and anxiety disorders as early manifestations of medical illness: A systematic review. Psychother Psychosom. 84:22–29. 2015. View Article : Google Scholar

118 

Casorelli I, Bossa C and Bignami M: DNA damage and repair in human cancer: Molecular mechanisms and contribution to therapy-related leukemias. Int J Environ Res Public Health. 9:2636–2657. 2012. View Article : Google Scholar : PubMed/NCBI

119 

Higgins CF: Multiple molecular mechanisms for multidrug resistance transporters. Nature. 446:749–757. 2007. View Article : Google Scholar : PubMed/NCBI

120 

Abraham J, Salama NN and Azab AK: The role of P-glycoprotein in drug resistance in multiple myeloma. Leuk Lymphoma. 56:26–33. 2015. View Article : Google Scholar

121 

Su F, Ouyang N, Zhu P, Ouyang N, Jia W, Gong C, Ma X, Xu H and Song E: Psychological stress induces chemoresistance in breast cancer by upregulating mdr1. Biochem Biophys Res Commun. 329:888–897. 2005. View Article : Google Scholar : PubMed/NCBI

122 

Reeder A, Attar M, Nazario L, Bathula C, Zhang A, Hochbaum D, Roy E, Cooper KL, Oesterreich S, Davidson NE, et al: Stress hormones reduce the efficacy of paclitaxel in triple negative breast cancer through induction of DNA damage. Br J Cancer. 112:1461–1470. 2015. View Article : Google Scholar : PubMed/NCBI

123 

Yao H, Duan Z, Wang M, Awonuga AO, Rappolee D and Xie Y: Adrenaline induces chemoresistance in HT-29 colon adenocar-cinoma cells. Cancer Genet Cytogenet. 190:81–87. 2009. View Article : Google Scholar : PubMed/NCBI

124 

Pu J, Bai D, Yang X, Lu X, Xu L and Lu J: Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155. Biochem Biophys Res Commun. 428:210–215. 2012. View Article : Google Scholar : PubMed/NCBI

125 

Kong W, He L, Coppola M, Guo J, Esposito NN, Coppola D and Cheng JQ: MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem. 285:17869–17879. 2010. View Article : Google Scholar : PubMed/NCBI

126 

Hassan S, Karpova Y, Baiz D, Yancey D, Pullikuth A, Flores A, Register T, Cline JM, D’Agostino R Jr, Danial N, et al: Behavioral stress accelerates prostate cancer development in mice. J Clin Invest. 123:874–886. 2013.PubMed/NCBI

127 

Sun X, Bao J, Nelson KC, Li KC, Kulik G and Zhou X: Systems modeling of anti-apoptotic pathways in prostate cancer: Psychological stress triggers a synergism pattern switch in drug combination therapy. PLOS Comput Biol. 9:e10033582013. View Article : Google Scholar : PubMed/NCBI

128 

Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee K, et al: Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 357:1156–1160. 2017. View Article : Google Scholar : PubMed/NCBI

129 

van Bodegom M, Homberg JR and Henckens MJAG: Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front Cell Neurosci. 11:872017. View Article : Google Scholar : PubMed/NCBI

130 

Antoni MH: Psychosocial intervention effects on adaptation, disease course and biobehavioral processes in cancer. Brain Behav Immun. 30(Suppl): S88–S98. 2013. View Article : Google Scholar

131 

Saxton JM, Scott EJ, Daley AJ, Woodroofe M, Mutrie N, Crank H, Powers HJ and Coleman RE: Effects of an exercise and hypocaloric healthy eating intervention on indices of psychological health status, hypothalamic-pituitary-adrenal axis regulation and immune function after early-stage breast cancer: A randomised controlled trial. Breast Cancer Res. 16:R392014. View Article : Google Scholar : PubMed/NCBI

132 

Chida Y, Hamer M, Wardle J and Steptoe A: Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol. 5:466–475. 2008. View Article : Google Scholar : PubMed/NCBI

133 

Dieli-Conwright CM and Orozco BZ: Exercise after breast cancer treatment: Current perspectives. Breast Cancer (Dove Med Press). 7:353–362. 2015.

134 

Nota JA and Coles ME: Shorter sleep duration and longer sleep onset latency are related to difficulty disengaging attention from negative emotional images in individuals with elevated transdiagnostic repetitive negative thinking. J Behav Ther Exp Psychiatry. 58:114–122. 2018. View Article : Google Scholar

135 

Guzman-Marin R and Avidan AY: Sleep disorders in patients with cancer. J Community Support Oncol. 13:148–155. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

December 2018
Volume 53 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, Z., Wang, Y., & Li, Q. (2018). Mechanisms underlying the effects of stress on tumorigenesis and metastasis (Review). International Journal of Oncology, 53, 2332-2342. https://doi.org/10.3892/ijo.2018.4570
MLA
Zhang, Z., Wang, Y., Li, Q."Mechanisms underlying the effects of stress on tumorigenesis and metastasis (Review)". International Journal of Oncology 53.6 (2018): 2332-2342.
Chicago
Zhang, Z., Wang, Y., Li, Q."Mechanisms underlying the effects of stress on tumorigenesis and metastasis (Review)". International Journal of Oncology 53, no. 6 (2018): 2332-2342. https://doi.org/10.3892/ijo.2018.4570