Open Access

Isoforms S and L of MRPL33 from alternative splicing have isoform‑specific roles in the chemoresponse to epirubicin in gastric cancer cells via the PI3K/AKT signaling pathway

  • Authors:
    • Jie Li
    • Dan Feng
    • Cuixia Gao
    • Yingyi Zhang
    • Jing Xu
    • Meihong Wu
    • Xianbao Zhan
  • View Affiliations

  • Published online on: February 27, 2019     https://doi.org/10.3892/ijo.2019.4728
  • Pages: 1591-1600
  • Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Drug resistance is a major cause of cancer‑associated mortality. Epirubicin‑based chemotherapy initially benefits patients with metastatic or advanced gastric cancer; however, tumor recurrence can occur following several courses of treatment. Mitochondrial ribosomal protein L33 (MRPL33)‑long (L) and MRPL33‑short (S), isoforms of MRPL33 that arise from AS, have been reported to regulate cell growth and apoptosis in cancer; however, few studies have evaluated the roles of MRPL33‑L and MRPL33‑S in gastric cancer. In the present study, MRPL33‑L was demonstrated to be significantly more abundant in gastric tumor tissues than the MRPL33‑S isoform. MRPL33‑S promoted chemosensitivity to epirubicin in gastric cancer as demonstrated by a chemoresponse assay; chemosensitivity was suppressed in response to MRPL33‑L. Gene microarray analysis was performed to investigate the underlying mechanisms. Bioinformatic analysis revealed that overexpression of MRPL33‑L and MRPL33‑S served critical roles in transcription, signal transduction and apoptosis. In particular, the phosphoinositide 3‑kinase (PI3K)/AKT serine/threonine kinase (AKT) signaling pathway was markedly regulated. A total of 36 target genes, including PIK3 regulatory subunit α, AKT2, cAMP response element‑binding protein (CREB) 1, forkhead box 3, glycogen synthase kinase 3β and mammalian target of rapamycin, which are involved in the PI3K/AKT signaling pathway, were selected for further investigation via protein‑protein interaction network and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Furthermore, western blot analysis indicated that MRPL33‑S promoted the chemoresponse to epirubicin by deactivating PI3K/AKT/CREB signaling and inducing apoptosis, while MRPL33‑L had the opposite effects. In conclusion, the results of the present study revealed that isoforms S and L of MRPL33, which arise from alternative splicing, exhibited opposing roles in the chemoresponse to epirubicin in gastric cancer via the PI3K/AKT signaling pathway. These findings may contribute to the development of potential therapeutic strategies for the resensitization of patients with gastric cancer to epirubicin treatment.
View Figures
View References

Related Articles

Journal Cover

May-2019
Volume 54 Issue 5

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Li J, Feng D, Gao C, Zhang Y, Xu J, Wu M and Zhan X: Isoforms S and L of MRPL33 from alternative splicing have isoform‑specific roles in the chemoresponse to epirubicin in gastric cancer cells via the PI3K/AKT signaling pathway. Int J Oncol 54: 1591-1600, 2019
APA
Li, J., Feng, D., Gao, C., Zhang, Y., Xu, J., Wu, M., & Zhan, X. (2019). Isoforms S and L of MRPL33 from alternative splicing have isoform‑specific roles in the chemoresponse to epirubicin in gastric cancer cells via the PI3K/AKT signaling pathway. International Journal of Oncology, 54, 1591-1600. https://doi.org/10.3892/ijo.2019.4728
MLA
Li, J., Feng, D., Gao, C., Zhang, Y., Xu, J., Wu, M., Zhan, X."Isoforms S and L of MRPL33 from alternative splicing have isoform‑specific roles in the chemoresponse to epirubicin in gastric cancer cells via the PI3K/AKT signaling pathway". International Journal of Oncology 54.5 (2019): 1591-1600.
Chicago
Li, J., Feng, D., Gao, C., Zhang, Y., Xu, J., Wu, M., Zhan, X."Isoforms S and L of MRPL33 from alternative splicing have isoform‑specific roles in the chemoresponse to epirubicin in gastric cancer cells via the PI3K/AKT signaling pathway". International Journal of Oncology 54, no. 5 (2019): 1591-1600. https://doi.org/10.3892/ijo.2019.4728