|
1
|
Lebret T, Culine S, Davin JL, Hennequin C,
Mignard JP, Moreau JL, Rossi D, Zerbib M, Mahmoudi A and Latorzeff
I: Quality of life of 1276 elderly patients with prostate cancer,
starting treatment with a gonadotropin-releasing hormone agonist:
Results of a French observational study. Aging Male. 17:87–93.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Aoun F, Marcelis Q and Roumeguère T:
Minimally invasive devices for treating lower urinary tract
symptoms in benign prostate hyperplasia: Technology update. Res Rep
Urol. 7:125–136. 2015.PubMed/NCBI
|
|
4
|
Kullisaar T, Türk S, Punab M and Mändar R:
Oxidative stress-cause or consequence of male genital tract
disorders? Prostate. 72:977–983. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Aoun F, Albisinni S, Chemaly AK, Zanaty M
and Roumeguère T: In search for a common pathway for health issues
in men-the sign of a holmesian deduction. Asian Pac J Cancer Prev.
17:1–13. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bostanci Y, Kazzazi A, Momtahen S, Laze J
and Djavan B: Correlation between benign prostatic hyperplasia and
inflammation. Curr Opin Urol. 23:5–10. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chughtai B, Lee R, Te A and Kaplan S: Role
of inflammation in benign prostatic hyperplasia. Rev Urol.
13:147–150. 2011.PubMed/NCBI
|
|
8
|
Sciarra A, Mariotti G, Salciccia S, Gomez
Autran A, Monti S, Toscano V and Di Silverio F: Prostate growth and
inflammation. J Steroid Biochem Mol Biol. 108:254–260. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hamid AR, Umbas R and Mochtar CA: Recent
role of inflammation in prostate diseases: Chemoprevention
development opportunity. Acta Med Indones. 43:59–65.
2011.PubMed/NCBI
|
|
10
|
Wong CP, Bray TM and Ho E: Induction of
proinflammatory response in prostate cancer epithelial cells by
activated macrophages. Cancer Lett. 276:38–46. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Meagher EA and FitzGerald GA: Indices of
lipid peroxidation in vivo: Strengths and limitations. Free Radic
Biol Med. 28:1745–1750. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Merendino RA, Salvo F, Saija A, Di
Pasquale G, Tomaino A, Minciullo PL, Fraccica G and Gangemi S:
Malondialdehyde in benign prostate hypertrophy: A useful marker?
Mediators Inflamm. 12:127–128. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Pace G, Di Massimo C, De Amicis D,
Corbacelli C, Di Renzo L, Vicentini C, Miano L and Ciancarelli
Tozzi MG: Oxidative stress in benign prostatic hyperplasia and
prostate cancer. Urol Int. 85:328–333. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Arsova-Sarafinovska Z, Eken A, Matevska N,
Erdem O, Sayal A, Savaser A, Banev S, Petrovski D, Dzikova S,
Georgiev V, et al: Increased oxidative/nitrosative stress and
decreased antioxidant enzyme activities in prostate cancer. Clin
Biochem. 42:1228–1235. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Almushatat AS, Talwar D, McArdle PA,
Williamson C, Sattar N, O'Reilly DS, Underwood MA and McMillan DC:
Vitamin antioxidants, lipid peroxidation and the systemic
inflammatory response in patients with prostate cancer. Int J
Cancer. 118:1051–1053. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Vital P, Castro P and Ittmann M: Oxidative
stress promotes benign prostatic hyperplasia. Prostate. 76:58–67.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Massey KJ, Hong NJ and Garvin JL:
Angiotensin II stimulates superoxide production in the thick
ascending limb by activating NOX4. Am J Physiol Cell Physiol.
303:C781–C789. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Verbon EH, Post JA and Boonstra J: The
influence of reactive oxygen species on cell cycle progression in
mammalian cells. Gene. 511:1–6. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Nassis L, Frauman AG, Ohishi M, Zhuo J,
Casley DJ, Johnston CI and Fabiani ME: Localization of
angiotensin-converting enzyme in the human prostate: Pathological
expression in benign prostatic hyperplasia. J Pathol. 195:571–579.
2001. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Klebanoff SJ: Myeloperoxidase: Friend and
foe. J Leukoc Biol. 77:598–625. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Boudjeltia KZ, Legssyer I, Van Antwerpen
P, Kisoka RL, Babar S, Moguilevsky N, Delree P, Ducobu J, Remacle
C, Vanhaeverbeek M and Brohee D: Triggering of inflammatory
response by myeloperoxidase-oxidized LDL. Biochem Cell Biol.
84:805–812. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
22
|
Roumeguère T, Delree P, Van Antwerpen P,
Rorive S, Vanhamme L, de Ryhove Lde L, Serteyn D, Wespes E,
Vanhaerverbeek M and Boudjeltia KZ: Intriguing location of
myeloperoxidase in the prostate: A preliminary immunohistochemical
study. Prostate. 72:507–513. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Boudjeltia KZ, Delporte C, Van Antwerpen
P, Franck T, Serteyn D, Moguilevsky N, Raes M, Vanhamme L,
Vanhaeverbeek M, Van Meerhaeghe A and Roumeguère T:
Myeloperoxidase-dependent LDL modifications in bloodstream are
mainly predicted by angiotensin II, adiponectin, and
myeloperoxidase activity: A cross-sectional study in men. Mediators
Inflamm. 2013:7507422013.PubMed/NCBI
|
|
24
|
Kurfurstova D, Bartkova J, Vrtel R,
Mickova A, Burdova A, Majera D, Mistrik M, Kral M, Santer FR,
Bouchal J and Bartek J: DNA damage signalling barrier, oxidative
stress and treatment-relevant DNA repair factor alterations during
progression of human prostate cancer. Mol Oncol. 10:879–894. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Thapa D, Meng P, Bedolla RG, Reddick RL,
Kumar AP and Ghosh R: NQO1 suppresses NF-κB-p300 interaction to
regulate inflammatory mediators associated with prostate
tumorigenesis. Cancer Res. 74:5644–5655. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Huang W, Eickhoff JC, Mehraein-Ghomi F,
Church DR, Wilding G and Basu HS: Expression of spermidine/spermine
N(1)-acetyl transferase (SSAT) in human prostate tissues is related
to prostate cancer progression and metastasis. Prostate.
75:1150–1159. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yang B, Wagner J, Damaschke N, Yao T,
Wuerzberger-Davis SM, Lee MH, Svaren J, Miyamoto S and Jarrard DF:
A novel pathway links oxidative stress to loss of insulin growth
factor-2 (IGF2) imprinting through NF-κB activation. PloS One.
9:e880522014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Labanca E, De Luca P, Gueron G, Paez A,
Moiola CP, Massillo C, Porretti J, Giudice J, Zalazar F, Navone N,
et al: Association of HO-1 and BRCA1 is critical for the
maintenance of cellular homeostasis in prostate cancer. Mol Cancer
Res. 13:1455–1464. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Basu A, Ross Cajigas-Du CK, Rios-Colon L,
Mediavilla-Varela M, Daniels-Wells TR, Leoh LS, Rojas H, Banerjee
H, Martinez SR, Acevedo-Martinez S and Casiano CA: LEDGF/p75
overexpression attenuates oxidative stress-induced necrosis and
upregulates the oxidoreductase ERP57/PDIA3/GRP58 in prostate
cancer. PloS One. 11:e01465492016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Jin Y, Wang L, Qu S, Sheng X, Kristian A,
Mælandsmo GM, Pällmann N, Yuca E, Tekedereli I, Gorgulu K, et al:
STAMP2 increases oxidative stress and is critical for prostate
cancer. EMBO Mol Med. 7:315–331. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Mian OY, Khattab MH, Hedayati M, Coulter
J, Abubaker-Sharif B, Schwaninger JM, Veeraswamy RK, Brooks JD,
Hopkins L, Shinohara DB, et al: GSTP1 loss results in accumulation
of oxidative DNA base damage and promotes prostate cancer cell
survival following exposure to protracted oxidative stress.
Prostate. 76:199–206. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Geybels MS, van den Brandt PA, van
Schooten FJ and Verhage BA: Oxidative stress-related genetic
variants, pro- and antioxidant intake and status, and advanced
prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 24:178–186.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ding X, Yang DR, Lee SO, Chen YL, Xia L,
Lin SJ, Yu S, Niu YJ, Li G and Chang C: TR4 nuclear receptor
promotes prostate cancer metastasis via upregulation of CCL2/CCR2
signaling. Int J Cancer. 136:955–964. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Debelec-Butuner B, Ertunc N and Korkmaz
KS: Inflammation contributes to NKX3.1 loss and augments DNA damage
but does not alter the DNA damage response via increased SIRT1
expression. J Inflamm (Lond). 12:122015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chaiswing L, Zhong W and Oberley TD:
Increasing discordant antioxidant protein levels and enzymatic
activities contribute to increasing redox imbalance observed during
human prostate cancer progression. Free Radic Biol Med. 67:342–352.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yakes FM and Van Houten B: Mitochondrial
DNA damage is more extensive and persists longer than nuclear DNA
damage in human cells following oxidative stress. Proc Natl Acad
Sci USA. 94:514–519. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Khandrika L, Kumar B, Koul S, Maroni P and
Koul HK: Oxidative stress in prostate cancer. Cancer Lett.
282:125–136. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ntais C, Polycarpou A and Ioannidis JP:
Association of GSTM1, GSTT1, and GSTP1 gene polymorphisms with the
risk of prostate cancer: A meta-analysis. Cancer Epidemiol
Biomarkers Prev. 14:176–181. 2005.PubMed/NCBI
|
|
39
|
Luchman HA, Villemaire ML, Bismar TA,
Carlson BA and Jirik FR: Prostate epithelium-specific deletion of
the selenocysteine tRNA gene Trsp leads to early onset
intraepithelial neoplasia. Am J Pathol. 184:871–877. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jones KJ, Chetram MA, Bethea DA, Bryant
LK, Odero-Marah V and Hinton CV: Cysteine (C)-X-C receptor 4
regulates NADPH oxidase-2 during oxidative stress in prostate
cancer cells. Cancer Microenviron. Sep 28–2013.(Epub ahead of
print). View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Valencia T, Kim JY, Abu-Baker S,
Moscat-Pardos J, Ahn CS, Reina-Campos M, Duran A, Castilla EA,
Metallo CM, Diaz-Meco MT and Moscat J: Metabolic reprogramming of
stromal fibroblasts through p62-mTORC1 signaling promotes
inflammation and tumorigenesis. Cancer Cell. 26:121–135. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cao ZG, Xu X, Xue YM and Zhao SL:
Comparison of 4-hydroxynonenal-induced p53-mediated apoptosis in
prostate cancer cells LNCaP and DU145. Contemp Oncol (Pozn).
18:22–28. 2014.PubMed/NCBI
|
|
43
|
Hu C, Yang H, Zhao Y, Chen X, Dong Y, Li
L, Dong Y, Cui J, Zhu T, Zheng P, et al: The role of inflammatory
cytokines and ERK1/2 signaling in chronic prostatitis/chronic
pelvic pain syndrome with related mental health disorders. Sci Rep.
6:286082016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Strauss AC and Dimitrakov JD: New
treatments for chronic prostatitis/chronic pelvic pain syndrome.
Nat Rev Urol. 7:127–135. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Polackwich AS and Shoskes DA: Chronic
prostatitis/chronic pelvic pain syndrome: A review of evaluation
and therapy. Prostate Cancer Prostatic Dis. 19:132–138. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mosli HA, Al-Abd AM, El-Shaer MA, Khedr A,
Gazzaz FS and Abdel-Naim AB: Local inflammation influences
oestrogen metabolism in prostatic tissue. BJU Int. 110:274–282.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang LL, Huang YH, Yan CY, Wei XD, Hou JQ,
Pu JX and Lv JX: N-acetylcysteine ameliorates prostatitis via
miR-141 regulating Keap1/Nrf2 signaling. Inflammation. 39:938–947.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Pontari MA and Ruggieri MR: Mechanisms in
prostatitis/chronic pelvic pain syndrome. J Urol. 172:839–845.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yang X, Yuan L, Xiong C, Yin C and Ruan J:
Abacopteris penangiana exerts testosterone-induced benign prostatic
hyperplasia protective effect through regulating inflammatory
responses, reducing oxidative stress and anti-proliferative. J
Ethnopharmacol. 157:105–113. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Halvorsen BL, Carlsen MH, Phillips KM,
Bøhn SK, Holte K, Jacobs DR Jr and Blomhoff R: Content of
redox-active compounds (ie, antioxidants) in foods consumed in the
United States. Am J Clin Nutr. 84:95–135. 2006.PubMed/NCBI
|
|
51
|
Vaz CV, Marques R, Maia CJ and Socorro S:
Aging-associated changes in oxidative stress, cell proliferation,
and apoptosis are prevented in the prostate of transgenic rats
overexpressing regucalcin. Transl Res. 166:693–705. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bae WJ, Ha US, Kim S, Kim SJ, Hong SH, Lee
JY, Hwang TK, Hwang SY, Kim HJ and Kim SW: Reduction of oxidative
stress may play a role in the anti-inflammatory effect of the novel
herbal formulation in a rat model of hydrochloric acid-induced
cystitis. Neurourol Urodyn. 34:86–91. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Konno S, Chu K, Feuer N, Phillips J and
Choudhury M: Potent anticancer effects of bioactive mushroom
extracts (Phellinus linteus) on a variety of human cancer cells. J
Clin Med Res. 7:76–82. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Prajapati V, Kale RK and Singh RP:
Silibinin combination with arsenic strongly inhibits survival and
invasiveness of human prostate carcinoma cells. Nutr Cancer.
67:647–658. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Gobbo MG, Costa CF, Silva DG, de Almeida
EA and Góes RM: Effect of melatonin intake on oxidative stress
biomarkers in male reproductive organs of rats under experimental
diabetes. Oxid Med Cell Longev. 2015:6145792015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yiginer O, Ozcelik F, Inanc T, Aparci M,
Ozmen N, Cingozbay BY, Kardesoglu E, Suleymanoglu S, Sener G and
Cebeci BS: Allopurinol improves endothelial function and reduces
oxidant-inflammatory enzyme of myeloperoxidase in metabolic
syndrome. Clin Res Cardiol. 97:334–340. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sharma H, Kanwal R, Bhaskaran N and Gupta
S: Plant flavone apigenin binds to nucleic acid bases and reduces
oxidative DNA damage in prostate epithelial cells. PloS One.
9:e915882014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Anantharaju PG, Gowda PC, Vimalambike MG
and Madhunapantula SV: An overview on the role of dietary phenolics
for the treatment of cancers. Nutr J. 15:992016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Gueritat J, Lefeuvre-Orfila L, Vincent S,
Cretual A, Ravanat JL, Gratas-Delamarche A, Rannou-Bekono F and
Rebillard A: Exercise training combined with antioxidant
supplementation prevents the antiproliferative activity of their
single treatment in prostate cancer through inhibition of redox
adaptation. Free Radic Biol Med. 77:95–105. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
McGoldrick CA, Jiang YL, Brannon M,
Krishnan K and Stone WL: In vitro evaluation of novel
N-acetylalaninate prodrugs that selectively induce apoptosis in
prostate cancer cells. BMC Cancer. 14:6752014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kumar DG, Deepa P, Rathi MA, Meenakshi P
and Gopalakrishnan VK: Modulatory effects of Crataeva nurvala bark
against testosterone and N-methyl-N-nitrosourea-induced oxidative
damage in prostate of male albino rats. Pharmacogn Mag. 8:285–291.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ratnayake R, Liu Y, Paul VJ and Luesch H:
Cultivated sea lettuce is a multiorgan protector from oxidative and
inflammatory stress by enhancing the endogenous antioxidant defense
system. Cancer Prev Res (Phila). 6:989–999. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yonezawa Y, Hada T, Uryu K, Tsuzuki T,
Eitsuka T, Miyazawa T, Murakami-Nakai C, Yoshida H and Mizushina Y:
Inhibitory effect of conjugated eicosapentaenoic acid on mammalian
DNA polymerase and topoisomerase activities and human cancer cell
proliferation. Biochem Pharmacol. 70:453–460. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lovegrove C, Ahmed K, Challacombe B, Khan
MS, Poper R and Dasgupta P: Systematic review of prostate cancer
risk and association with consumption of fish and fish-oils:
Analysis of 495,321 participants. Int J Clin Pract. 69:87–105.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Flis A, Suchocki P, Królikowska MA,
Suchocka Z, Remiszewska M, Śliwka L, Książek I, Sitarz K, Sochacka
M, Hoser G, et al: Selenitetriglycerides-Redox-active agents.
Pharmacol Rep. 67:1–8. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lippman SM, Klein EA, Goodman PJ, Lucia
MS, Thompson IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM,
Hartline JA, et al: Effect of selenium and vitamin E on risk of
prostate cancer and other cancers: The selenium and vitamin e
cancer prevention trial (SELECT). JAMA. 301:39–51. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Klein EA, Thompson IM Jr, Tangen CM,
Crowley JJ, Lucia MS, Goodman PJ, Minasian LM, Ford LG, Parnes HL,
Gaziano JM, et al: Vitamin E and the risk of prostate cancer: The
selenium and vitamin E cancer prevention trial (SELECT). JAMA.
306:1549–1556. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Richie JP Jr, Das A, Calcagnotto AM, Sinha
R, Neidig W, Liao J, Lengerich EJ, Berg A, Hartman TJ, Ciccarella
A, et al: Comparative effects of two different forms of selenium on
oxidative stress biomarkers in healthy men: A randomized clinical
trial. Cancer Prev Res (Phila). 7:796–804. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jablonska E, Raimondi S, Gromadzinska J,
Reszka E, Wieczorek E, Krol MB, Smok-Pieniazek A, Nocun M, Stepnik
M, Socha K, et al: DNA damage and oxidative stress response to
selenium yeast in the non-smoking individuals: A short-term
supplementation trial with respect to GPX1 and SEPP1 polymorphism.
Eur J Nutr. 55:2469–2484. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Thompson TA and Wilding G: Androgen
antagonist activity by the antioxidant moiety of vitamin E,
2,2,5,7,8-pentamethyl-6-chromanol in human prostate carcinoma
cells. Mol Cancer Ther. 2:797–803. 2003.PubMed/NCBI
|
|
71
|
Kyriakopoulos CE, Heath EI, Eickhoff JC,
Kolesar J, Yayehyirad M, Moll T, Wilding G and Liu G: A multicenter
phase 1/2a dose-escalation study of the antioxidant moiety of
vitamin E 2,2,5,7,8-pentamethyl-6-chromanol (APC-100) in men with
advanced prostate cancer. Invest New Drugs. 34:225–230. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Giovannucci E, Ascherio A, Rimm EB,
Stampfer MJ, Colditz GA and Willett WC: Intake of carotenoids and
retinol in relation to risk of prostate cancer. J Natl Cancer Inst.
87:1767–1776. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Albanes D, Heinonen OP, Huttunen JK,
Taylor PR, Virtamo J, Edwards BK, Haapakoski J, Rautalahti M,
Hartman AM, Palmgren J, et al: Effects of alpha-tocopherol and
beta-carotene supplements on cancer incidence in the
alpha-tocopherol beta-carotene cancer prevention study. Am J Clin
Nutr. 62 6 Suppl:1427S–1430S. 1995.PubMed/NCBI
|
|
74
|
Norrish AE, Jackson RT, Sharpe SJ and
Skeaff CM: Prostate cancer and dietary carotenoids. Am J Epidemiol.
151:119–123. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kolonel LN, Nomura AM and Cooney RV:
Dietary fat and prostate cancer: Current status. J Natl Cancer
Inst. 91:414–428. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bemis DL, Capodice JL, Anastasiadis AG,
Katz AE and Buttyan R: Zyflamend, a unique herbal preparation with
nonselective COX inhibitory activity, induces apoptosis of prostate
cancer cells that lack COX-2 expression. Nutr Cancer. 52:202–212.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gu Z, Suburu J, Chen H and Chen YQ:
Mechanisms of Omega-3 polyunsaturated fatty acids in prostate
cancer prevention. Biomed Res Int. 2013:8245632013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Brown MD, Hart CA, Gazi E, Bagley S and
Clarke NW: Promotion of prostatic metastatic migration towards
human bone marrow stoma by Omega 6 and its inhibition by Omega 3
PUFAs. Br J Cancer. 94:842–853. 2006. View Article : Google Scholar : PubMed/NCBI
|