Open Access

Biological effect of ketamine in urothelial cell lines and global gene expression analysis in the bladders of ketamine‑injected mice

  • Authors:
    • Cheng‑Huang Shen
    • Shou‑Tsung Wang
    • Ying‑Ray Lee
    • Shiau‑Yuan Liu
    • Yi‑Zhen Li
    • Jiann‑Der Wu
    • Yi‑Ju Chen
    • Yi‑Wen Liu
  • View Affiliations

  • Published online on: October 30, 2014     https://doi.org/10.3892/mmr.2014.2823
  • Pages: 887-895
  • Copyright: © Shen et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Ketamine is used clinically for anesthesia but is also abused as a recreational drug. Previously, it has been established that ketamine‑induced bladder interstitial cystitis is a common syndrome in ketamine‑abusing individuals. As the mechanisms underlying ketamine‑induced cystitis have yet to be revealed, the present study investigated the effect of ketamine on human urothelial cell lines and utilized a ketamine‑injected mouse model to identify ketamine‑induced changes in gene expression in mice bladders. In the in vitro bladder cell line assay, ketamine induced cytotoxicity in a dose‑ and time‑dependent manner. Ketamine arrested the cells in G1 phase and increased the sub‑G1 population, and also increased the barrier permeability of these cell lines. In the ketamine‑injected mouse model, ketamine did not change the body weight and bladder histology of the animals at the dose of 30 mg/kg/day for 60 days. Global gene expression analysis of the animals' bladders following data screening identified ten upregulated genes and 36 downregulated genes induced by ketamine. A total of 52% of keratin family genes were downregulated, particularly keratin 6a, 13 and 14, which was confirmed by polymerase chain reaction analysis. Keratin 14 protein, one of the 36 ketamine‑induced downregulated genes, was also reduced in the ketamine‑treated mouse bladder, as determined by immunohistochemical analysis. This suggested that cytotoxicity and keratin gene downregulation may have a critical role in ketamine‑induced cystitis.
View Figures
View References

Related Articles

Journal Cover

February-2015
Volume 11 Issue 2

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Shen CH, Wang ST, Lee YR, Liu SY, Li YZ, Wu JD, Chen YJ and Liu YW: Biological effect of ketamine in urothelial cell lines and global gene expression analysis in the bladders of ketamine‑injected mice. Mol Med Rep 11: 887-895, 2015
APA
Shen, C., Wang, S., Lee, Y., Liu, S., Li, Y., Wu, J. ... Liu, Y. (2015). Biological effect of ketamine in urothelial cell lines and global gene expression analysis in the bladders of ketamine‑injected mice. Molecular Medicine Reports, 11, 887-895. https://doi.org/10.3892/mmr.2014.2823
MLA
Shen, C., Wang, S., Lee, Y., Liu, S., Li, Y., Wu, J., Chen, Y., Liu, Y."Biological effect of ketamine in urothelial cell lines and global gene expression analysis in the bladders of ketamine‑injected mice". Molecular Medicine Reports 11.2 (2015): 887-895.
Chicago
Shen, C., Wang, S., Lee, Y., Liu, S., Li, Y., Wu, J., Chen, Y., Liu, Y."Biological effect of ketamine in urothelial cell lines and global gene expression analysis in the bladders of ketamine‑injected mice". Molecular Medicine Reports 11, no. 2 (2015): 887-895. https://doi.org/10.3892/mmr.2014.2823