Borna disease virus infection impacts microRNAs associated with nervous system development, cell differentiation, proliferation and apoptosis in the hippocampi of neonatal rats

  • Authors:
    • Mingjun Zhao
    • Lin Sun
    • Shigang Chen
    • Dan Li
    • Liang Zhang
    • Peng He
    • Xia Liu
    • Lujun Zhang
    • Hong Zhang
    • Deyu Yang
    • Rongzhong Huang
    • Peng Xie
  • View Affiliations

  • Published online on: May 25, 2015     https://doi.org/10.3892/mmr.2015.3828
  • Pages: 3697-3703
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNAs (miRNAs) regulate gene expression by inhibiting transcription or translation and are involved in diverse biological processes, including development, cellular differentiation and tumor generation. miRNA microarray technology is a high‑throughput global analysis tool for miRNA expression profiling. Here, the hippocampi of four borna disease virus (BDV)‑infected and four non‑infected control neonatal rats were selected for miRNA microarray and bioinformatic analysis. Reverse transcription quantitative polymerase chain reaction (RT‑qPCR) analysis was subsequently performed to validate the dysregulated miRNAs. Seven miRNAs (miR‑145*, miR‑146a*, miR‑192*, miR‑200b, miR‑223*, miR‑449a and miR‑505), showed increased expres­sion, whereas two miRNAs (miR‑126 and miR‑374) showed decreased expression in the BDV‑infected group. By RT‑qPCR validation, five miRNAs (miR‑126, miR‑200b, miR‑374, miR‑449a and miR‑505) showed significantly decreased expression (P<0.05) in response to BDV infection. Biocarta pathway analysis predicted target genes associated with ‘RNA’, ‘IGF1mTOR’, ‘EIF2’, ‘VEGF’, ‘EIF’, ‘NTHI’, ‘extrinsic’, ‘RB’, ‘IL1R’ and ‘IGF1’ pathways. Gene Ontology analysis predicted target genes associated with ‘peripheral nervous system development’, ‘regulation of small GTPase-mediated signal transduction’, ‘regulation of Ras protein signal transduction’, ‘aerobic respiration’, ‘membrane fusion’, ‘positive regulation of cell cycle’, ‘cellular respiration’, ‘heterocycle metabolic process’, ‘protein tetramerization’ and ‘regulation of Rho protein signal transduction’ processes. Among the five dysregulated miRNAs identified by RT‑qPCR, miR‑126, miR‑200b and miR‑449a showed a strong association with nervous system development, cell differentiation, proliferation and apoptosis.

References

1 

Zhang L, Wang X, Zhan Q, et al: Evidence for natural Borna disease virus infection in healthy domestic animals in three areas of western China. Arch Virol. 159:1941–1949. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Briese T, Schneemann A, Lewis AJ, et al: Genomic organization of Borna disease virus. Proc Natl Acad Sci USA. 91:4362–4366. 1994. View Article : Google Scholar : PubMed/NCBI

3 

Horie M, Honda T, Suzuki Y, et al: Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature. 463:84–87. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Bode L and Ludwig H: Borna disease virus infection, a human mental-health risk. Clin Microbiol Rev. 16:534–545. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Amsterdam JD, Winokur A, Dyson W, et al: Borna disease virus: a possible etiologic factor in human affective disorders? Arch Gen Psychiatry. 42:1093–1096. 1985. View Article : Google Scholar : PubMed/NCBI

6 

Rott R, Herzog S, Fleischer B, et al: Detection of serum antibodies to Borna disease virus in patients with psychiatric disorders. Science. 228:755–756. 1985. View Article : Google Scholar : PubMed/NCBI

7 

Carbone KM: Borna disease virus and human disease. Clin Microbiol Rev. 14:513–527. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Ikuta K, Ibrahim MS, Kobayashi T and Tomonaga K: Borna disease virus and infection in humans. Front Biosci. 7:d470–d495. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Schwemmle M: Borna disease virus infection in psychiatric patients: are we on the right track? Lancet Infect Dis. 1:46–52. 2001. View Article : Google Scholar

10 

Li Q, Wang Z, Zhu D, et al: Detection and analysis of Borna disease virus in Chinese patients with neurological disorders. Eur J Neurol. 16:399–403. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Zhang L, Xu MM, Zeng L, et al: Evidence for Borna disease virus infection in neuropsychiatric patients in three western China provinces. Eur J Clin Microbiol Infect Dis. 33:621–627. 2014. View Article : Google Scholar

12 

Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Bushati N and Cohen SM: microRNA functions. Annu Rev Cell Dev Biol. 23:175–205. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Ghosh Z, Mallick B and Chakrabarti J: Cellular versus viral microRNAs in host-virus interaction. Nucleic Acids Res. 37:1035–1048. 2009. View Article : Google Scholar :

15 

Gottwein E and Cullen BR: Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe. 3:375–387. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Qian J, Zhai A, Kao W, et al: Modulation of miR-122 on persistently Borna disease virus infected human oligodendroglial cells. Antiviral Res. 87:249–256. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Zhai A, Qian J, Kao W, et al: Borna disease virus encoded phos-phoprotein inhibits host innate immunity by regulating miR-155. Antiviral Res. 98:66–75. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Hornig M, Weissenböck H, Horscroft N and Lipkin WI: An infection-based model of neurodevelopmental damage. Proc Natl Acad Sci USA. 96:12102–12107. 1999. View Article : Google Scholar : PubMed/NCBI

19 

Pletnikov MV, Rubin SA, Schwartz GJ, Moran TH, Sobotka TJ and Carbone KM: Persistent neonatal Borna disease virus (BDV) infection of the brain causes chronic emotional abnormalities in adult rats. Physiol Behav. 66:823–831. 1999. View Article : Google Scholar : PubMed/NCBI

20 

Wu YJ, Schulz H, Lin CC, et al: Borna disease virus-induced neuronal degeneration dependent on host genetic background and prevented by soluble factors. Proc Natl Acad Sci USA. 110:1899–1904. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Ludwig H and Bode L: Borna disease virus: new aspects on infection, disease, diagnosis and epidemiology. Rev Sci Tech Off Int Epiz. 19:259–288. 2000.

22 

Clark JD, Gebhart GF, Gonder JC, Keeling ME and Kohn DF: Special report: the 1996 guide for the care and use of laboratory animals. ILAR J. 38:41–48. 1997. View Article : Google Scholar : PubMed/NCBI

23 

Huang R, Gao H, Zhang L, et al: Borna disease virus infection perturbs energy metabolites and amino acids in cultured human oligodendroglia cells. PLoS One. 7:e446652012. View Article : Google Scholar : PubMed/NCBI

24 

Bode L, Dürrwald R, Rantam FA, Ferszt R and Ludwig H: First isolates of infectious human Borna disease virus from patients with mood disorders. Mol Psychiatry. 1:200–212. 1996.PubMed/NCBI

25 

Lei Y, Li D, Deng J, et al: Metabolomic profiling of three brain regions from a postnatal infected Borna disease virus Hu-H1 rat model. Metabolomics. 10:484–495. 2013. View Article : Google Scholar

26 

Xie H, Zhu Y, Jiang W, et al: Lactoferrin-conjugated superpara-magnetic iron oxide nanoparticles as a specific MRI contrast agent for detection of brain glioma in vivo. Biomaterials. 32:495–502. 2011. View Article : Google Scholar

27 

Zhao B, Yu Q, Li H, Guo X and He X: Characterization of microRNA expression profiles in patients with intervertebral disc degeneration. Int J Mol Med. 33:43–50. 2014.

28 

Subramanian A, Tamayo P, Mootha VK, et al: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Pletnikov MV, Moran TH and Carbone KM: Borna disease virus infection of the neonatal rat: developmental brain injury model of autism spectrum disorders. Front Biosci. 7:d593–d607. 2002. View Article : Google Scholar : PubMed/NCBI

30 

Gosztonyi G: Natural and experimental Borna disease virus infections-neuropathology and pathogenetic considerations. APMIS. (Suppl 116): 53–57. 2008. View Article : Google Scholar

31 

Fanselow MS and Dong HW: Are the dorsal and ventral hippo-campus functionally distinct structures? Neuron. 65:7–19. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Davis TH, Cuellar TL, Koch SM, et al: Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci. 28:4322–4330. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Konopka W, Kiryk A, Novak M, et al: MicroRNA loss enhances learning and memory in mice. J Neurosci. 30:14835–14842. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Hébert SS and De Strooper B: Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci. 32:199–206. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Feng X, Wang H, Ye S, et al: Up-regulation of microRNA-126 may contribute to pathogenesis of ulcerative colitis via regulating NF-kappaB inhibitor IkappaBalpha. PLoS One. 7:e527822012. View Article : Google Scholar

36 

Planz O, Pleschka S and Wolff T: Borna disease virus: a unique pathogen and its interaction with intracellular signalling pathways. Cell Microbiol. 11:872–879. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Hans A, Bajramovic JJ, Syan S, et al: Persistent, noncytolytic infection of neurons by Borna disease virus interferes with ERK 1/2 signaling and abrogates BDNF-induced synaptogenesis. FASEB J. 18:863–865. 2004.PubMed/NCBI

38 

Brabletz S and Brabletz T: The ZEB/miR.200 feedback loop-a motor of cellular plasticity in development and cancer? EMBO Rep. 11:670–677. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Jadhav SP, Kamath SP, Choolani M, Lu J and Dheen ST: microRNA-200b modulates microglia-mediated neuroinflam-mation via the cJun/MAPK pathway. J Neurochem. 130:388–401. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Juhila J, Sipilä T, Icay K, et al: MicroRNA expression profiling reveals miRNA families regulating specific biological pathways in mouse frontal cortex and hippocampus. PloS one. 6:e214952011. View Article : Google Scholar : PubMed/NCBI

41 

Dheen ST, Kaur C and Ling EA: Microglial activation and its implications in the brain diseases. Curr Med Chem. 14:1189–1197. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Sabapathy K, Hu Y, Kallunki T, et al: JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr Biol. 9:116–125. 1999. View Article : Google Scholar : PubMed/NCBI

43 

Graves LM, Guy HI, Kozlowski P, et al: Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature. 403:328–332. 2000. View Article : Google Scholar : PubMed/NCBI

44 

Chang L and Karin M: Mammalian MAP kinase signalling cascades. Nature. 410:37–40. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Yang SH, Sharrocks AD and Whitmarsh AJ: Transcriptional regulation by the MAP kinase signaling cascades. Gene. 320:3–21. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Ciesielski-Treska J, Grant NJ, Ulrich G, et al: Fibrillar prion peptide (106–126) and scrapie prion protein hamper phagocytosis in microglia. Glia. 46:101–115. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Park JY, Paik SR, Jou I and Park SM: Microglial phagocytosis is enhanced by monomeric α.synuclein, not aggregated α synuclein: Implications for Parkinson's disease. Glia. 56:1215–1223. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Mizuno T: The biphasic role of microglia in Alzheimer's disease. Int J Alzheimer's Dis. 2012:2012.

49 

Frödin M and Gammeltoft S: Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol. 151:65–77. 1999. View Article : Google Scholar : PubMed/NCBI

50 

Liu X, Yang Y, Zhao M, et al: Proteomics reveal energy metabolism and mitogen-activated protein kinase signal transduction perturbation in human Borna disease virus Hu-H1-infected oligodendroglial cells. Neuroscience. 268:284–296. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Hu J, Fang Y, Cao Y, Qin R and Chen Q: miR-449a Regulates proliferation and chemosensitivity to cisplatin by targeting cyclin D1 and BCL2 in SGC7901 cells. Dig Dis Sci. 59:336–345. 2014. View Article : Google Scholar

52 

Li D, Lei Y, Deng J, et al: Human but not laboratory borna disease virus inhibits proliferation and induces apoptosis in human oligodendrocytes in vitro. PLoS One. 8:e666232013. View Article : Google Scholar : PubMed/NCBI

53 

Zhang EB, Kong R, Yin DD, et al: Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget. 5:2276–2292. 2014.PubMed/NCBI

54 

Sherr CJ and McCormick F: The RB and p53 pathways in cancer. Cancer Cell. 2:103–112. 2002. View Article : Google Scholar : PubMed/NCBI

55 

Yu BQ, Su LP, Li JF, et al: microrna expression signature of gastric cancer cells relative to normal gastric mucosa. Mol Med Rep. 6:821–826. 2012.PubMed/NCBI

56 

Strickland ER, Hook MA, Balaraman S, Huie JR, Grau JW and Miranda RC: MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience. 186:146–160. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2015
Volume 12 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhao, M., Sun, L., Chen, S., Li, D., Zhang, L., He, P. ... Xie, P. (2015). Borna disease virus infection impacts microRNAs associated with nervous system development, cell differentiation, proliferation and apoptosis in the hippocampi of neonatal rats. Molecular Medicine Reports, 12, 3697-3703. https://doi.org/10.3892/mmr.2015.3828
MLA
Zhao, M., Sun, L., Chen, S., Li, D., Zhang, L., He, P., Liu, X., Zhang, L., Zhang, H., Yang, D., Huang, R., Xie, P."Borna disease virus infection impacts microRNAs associated with nervous system development, cell differentiation, proliferation and apoptosis in the hippocampi of neonatal rats". Molecular Medicine Reports 12.3 (2015): 3697-3703.
Chicago
Zhao, M., Sun, L., Chen, S., Li, D., Zhang, L., He, P., Liu, X., Zhang, L., Zhang, H., Yang, D., Huang, R., Xie, P."Borna disease virus infection impacts microRNAs associated with nervous system development, cell differentiation, proliferation and apoptosis in the hippocampi of neonatal rats". Molecular Medicine Reports 12, no. 3 (2015): 3697-3703. https://doi.org/10.3892/mmr.2015.3828