Effect of growth differentiation factor‑9 C447T and G546A polymorphisms on the outcomes of in vitro fertilization

  • Authors:
    • Monika Serdyńska‑Szuster
    • Piotr Jędrzejczak
    • Katarzyna Ewa Ożegowska
    • Hanna Hołysz
    • Leszek Pawelczyk
    • Paweł Piotr Jagodziński
  • View Affiliations

  • Published online on: March 28, 2016     https://doi.org/10.3892/mmr.2016.5060
  • Pages: 4437-4442
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Single nucleotide polymorphisms (SNPs) in the growth differentiation factor (GDF)‑9 gene are associated with premature ovarian failure, insufficient ovarian stimulation and a poor in vitro fertilization (IVF) score in women with diminished ovarian reserve. The aim of the present study was to assess the effect of C447T (rs254286) and G546A (rs10491279) SNPs on ovary stimulation response, oocyte quality, fertilization rate and outcome of clinical pregnancy in an infertile population of Polish females (n=86) treated with IVF. The present study also included a group of fertile women (n=202). The P‑trend value, calculated for the GDF‑9 C447T transition in infertile women, was statistically significant and were equal to 0.0195. A significant association of the GDF‑9 C447T SNP was observed with infertility for the C/C vs. T/T + C/T model (OR= 2.140; 95% CI=1.043‑4.393; P=0.0349). The GDF‑9 G546A SNP was significantly associated with the G/A vs. G/G model with poor ovarian stimulation (OR=9.303; 95% CI=2.568‑33.745; P=0.0008) and poor fertilization rate (OR=2.981; 95% CI=1.033‑8.607; P=0.0385). For the GDF‑9 C447T SNP, a significant association was observed between the C/C + C/T vs. T/T model and a poor ovarian stimulation response (OR=15.309; 95% CI=0.875‑267.83; P=0.0078), and a poor fertilization rate (OR=4.842; 95% CI=1.310‑17.901; P=0.0121). The present genetic evaluation revealed associations between IVF outcomes and the GDF‑9 A546G and C447T SNPs. Additionally, these results indicated that the GDF‑9 C447T SNP is a possible candidate genetic risk factor for female infertility in the Polish population.

References

1 

Farquhar C, Rishworth JR, Brown J, Nelen WL and Marjoribanks J: Assisted reproductive technology: An overview of Cochrane Reviews. Cochrane Database Syst Rev. 7:CD0105372015.PubMed/NCBI

2 

Broekmans FJ, Kwee J, Hendriks DJ, Mol BW and Lambalk CB: A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update. 12:685–718. 2006. View Article : Google Scholar : PubMed/NCBI

3 

van Loendersloot L, Repping S, Bossuyt PM, van der Veen F and van Wely M: Prediction models in in vitro fertilization; where are we? A mini review J Adv Res. 5:295–301. 2014. View Article : Google Scholar

4 

Sunkara SK, Coomarasamy A, Arlt W and Bhattacharya S: Should androgen supplementation be used for poor ovarian response in IVF? Hum Reprod. 27:637–640. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Fritz MA and Speroff L: Clinical gynecologic endocrinology and infertility. 8th edition. Wolters Kluwer Health/Lippincott Williams & Wilkins; Philadelphia: 2011

6 

Soto N, Iñiguez G, López P, Larenas G, Mujica V, Rey RA and Codner E: Anti-Mullerian hormone and inhibin B levels as markers of premature ovarian aging and transition to menopause in type 1 diabetes mellitus. Hum Reprod. 24:2838–2844. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Benaglia L, Somigliana E, w Vighi V, Ragni G, Vercellini P and Fedele L: Rate of severe ovarian damage following surgery for endometriomas. Hum Reprod. 25:678–682. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Raffi F, Metwally M and Amer S: The impact of excision of ovarian endometrioma on ovarian reserve: A systematic review and meta-analysis. J Clin Endocrinol Metab. 97:3146–3154. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Chang HH, Chen MJ, Lu MY, Chern JP, Lu CY, Yang YL, Jou ST, Lin DT, Yang YS and Lin KH: Iron overload is associated with low anti-müllerian hormone in women with transfusion-dependent β-thalassaemia. BJOG. 118:825–831. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Hehenkamp WJ, Volkers NA, Broekmans FJ, de Jong FH, Themmen AP, Birnie E, Reekers JA and Ankum WM: Loss of ovarian reserve after uterine artery embolization: A randomized comparison with hysterectomy. Hum Reprod. 22:1996–2005. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Tropeano G, Di Stasi C, Amoroso S, Gualano MR, Bonomo L and Scambia G: Long-term effects of uterine fibroid embolization on ovarian reserve: A prospective cohort study. Fertil Steril. 94:2296–2300. 2010. View Article : Google Scholar : PubMed/NCBI

12 

De Vos M, Devroey P and Fauser BC: Primary ovarian insufficiency. Lancet. 376:911–921. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Gurtcheff SE and Klein NA: Diminished ovarian reserve and infertility. Clin Obstet Gynecol. 54:666–674. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Lawson R, El-Toukhy T, Kassab A, Taylor A, Braude P, Parsons J and Seed P: Poor response to ovulation induction is a stronger predictor of early menopause than elevated basal FSH: A life table analysis. Hum Reprod. 18:527–533. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Leonardi MR, Hofmann GE, Illions EH, Neal GS and Navot D: A prospective evaluation of clomiphene citrate challenge test screening of the general infertility population. Obstet Gynecol. 82:539–544. 1993.PubMed/NCBI

16 

May-Panloup P, Ferré-L'Hôtellier V, Morinière C, Marcaillou C, Lemerle S, Malinge MC, Coutolleau A, Lucas N, Reynier P, Descamps P and Guardiola P: Molecular characterization of corona radiata cells from patients with diminished ovarian reserve using microarray and microfluidic-based gene expression profiling. Hum Reprod. 27:829–843. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Lledo B, Ortiz JA, Llacer J and Bernabeu R: Pharmacogenetics of ovarian response. Pharmacogenomics. 15:885–893. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Juengel JL and McNatty KP: The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum Reprod Update. 11:143–160. 2005.PubMed/NCBI

19 

Mehlmann LM: Stops and starts in mammalian oocytes: Recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction. 130:791–799. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Pangas SA and Rajkovic A: Transcriptional regulation of early oogenesis: In search of masters. Hum Reprod Update. 12:65–76. 2006. View Article : Google Scholar

21 

Greene AD, Patounakis G and Segars JH: Genetic associations with diminished ovarian reserve: A systematic review of the literature. J Assist Reprod Genet. 31:935–946. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Vitt UA, Hayashi M, Klein C and Hsueh AJ: Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod. 62:370–377. 2000. View Article : Google Scholar : PubMed/NCBI

23 

Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, Prasad SV, Skinner SS, Dunbar BS, Dube JL, et al: Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 15:854–866. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Orisaka M, Orisaka S, Jiang JY, Craig J, Wang Y, Kotsuji F and Tsang BK: Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol. 20:2456–2468. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Yeo CX, Gilchrist RB, Thompson JG and Lane M: Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Hum Reprod. 23:67–73. 2008. View Article : Google Scholar

26 

Laissue P, Christin-Maitre S, Touraine P, Kuttenn F, Ritvos O, Aittomaki K, Bourcigaux N, Jacquesson L, Bouchard P, Frydman R, et al: Mutations and sequence variants in GDF-9 and BMP15 in patients with premature ovarian failure. Eur J Endocrinol. 154:739–744. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Chand AL, Ponnampalam AP, Harris SE, Winship IM and Shelling AN: Mutational analysis of BMP15 and GDF-9 as candidate genes for premature ovarian failure. Fertil Steril. 86:1009–1012. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Kovanci E, Rohozinski J, Simpson JL, Heard MJ, Bishop CE and Carson SA: Growth differentiating factor-9 mutations may be associated with premature ovarian failure. Fertil Steril. 87:143–146. 2007. View Article : Google Scholar

29 

Wang TT, Wu YT, Dong MY, Sheng JZ, Leung PC and Huang HF: G546A polymorphism of growth differentiation factor-9 contributes to the poor outcome of ovarian stimulation in women with diminished ovarian reserve. Fertil Steril. 94:2490–2492. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology: The Istanbul consensus workshop on embryo assessment: Proceedings of an expert meeting. Hum Reprod. 26:1270–1283. 2011. View Article : Google Scholar

31 

Aljanabi SM and Martinez I: Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25:4692–4693. 1997. View Article : Google Scholar

32 

Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N and Matzuk MM: Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 383:531–535. 1996. View Article : Google Scholar : PubMed/NCBI

33 

Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, Prasad SV, Skinner SS, Dunbar BS, Dube JL, et al: Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Molecular Endocrinology. 15:854–866. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Su YQ, Wu X, O'Brien MJ, Pendola FL, Denegre JN, Matzuk MM and Eppig JJ: Synergistic roles of BMP15 and GDF-9 in the development and function of the oocyte-cumulus cell complex in mice: Genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol. 276:64–73. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Liao WX, Moore RK, Otsuka F and Shimasaki S: Effect of intracellular interactions on the processing and secretion of bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9. Implication of the aberrant ovarian phenotype of BMP-15 mutant sheep. J Biol Chem. 278:3713–3719. 2003. View Article : Google Scholar

36 

Ma L, Chen Y, Mei S, Liu C, Ma X, Li Y, Jiang Y, Ha L and Xu X: Single nucleotide polymorphisms in premature ovarian failure-associated genes in a Chinese Hui population. Mol Med Rep. 12:2529–2538. 2015.PubMed/NCBI

37 

Dixit H, Rao LK, Padmalatha V, Kanakavalli M, Deenadayal M, Gupta N, Chakravarty B and Singh L: Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure. Menopause. 12:749–754. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Takebayashi K, Takakura K, Wang H, Kimura F, Kasahara K and Noda Y: Mutation analysis of the growth differentiation factor-9 and-9B genes in patients with premature ovarian failure and polycystic ovary syndrome. Fertil Steril. 74:976–979. 2000. View Article : Google Scholar : PubMed/NCBI

39 

Norling A, Hirschberg AL, Rodriguez-Wallberg KA, Iwarsson E, Wedell A and Barbaro M: Identification of a duplication within the GDF-9 gene and novel candidate genes for primary ovarian insufficiency (POI) by a customized high-resolution array comparative genomic hybridization platform. Hum Reprod. 29:1818–1827. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Wang B, Zhou S, Wang J, Liu J, Ni F, Yan J, Mu Y, Cao Y and Ma X: Identification of novel missense mutations of GDF-9 in Chinese women with polycystic ovary syndrome. Reprod Biomed Online. 21:344–348. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Sproul K, Jones MR, Mathur R, Azziz R and Goodarzi MO: Association study of four key folliculogenesis genes in polycystic ovary syndrome. BJOG. 117:756–760. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Peng J, Li Q, Wigglesworth K, Rangarajan A, Kattamuri C, Peterson RT, Eppig JJ, Thompson TB and Matzuk MM: Growth differentiation factor 9: Bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci USA. 110:E776–E785. 2013. View Article : Google Scholar

Related Articles

Journal Cover

May 2016
Volume 13 Issue 5

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Serdyńska‑Szuster, M., Jędrzejczak, P., Ożegowska, K.E., Hołysz, H., Pawelczyk, L., & Jagodziński, P.P. (2016). Effect of growth differentiation factor‑9 C447T and G546A polymorphisms on the outcomes of in vitro fertilization. Molecular Medicine Reports, 13, 4437-4442. https://doi.org/10.3892/mmr.2016.5060
MLA
Serdyńska‑Szuster, M., Jędrzejczak, P., Ożegowska, K. E., Hołysz, H., Pawelczyk, L., Jagodziński, P. P."Effect of growth differentiation factor‑9 C447T and G546A polymorphisms on the outcomes of in vitro fertilization". Molecular Medicine Reports 13.5 (2016): 4437-4442.
Chicago
Serdyńska‑Szuster, M., Jędrzejczak, P., Ożegowska, K. E., Hołysz, H., Pawelczyk, L., Jagodziński, P. P."Effect of growth differentiation factor‑9 C447T and G546A polymorphisms on the outcomes of in vitro fertilization". Molecular Medicine Reports 13, no. 5 (2016): 4437-4442. https://doi.org/10.3892/mmr.2016.5060