Nicotinamide induces liver regeneration and improves liver function by activating SIRT1

  • Authors:
    • Hai‑Feng Wan
    • Jia‑Xin Li
    • Hao‑Tian Liao
    • Ming‑Heng Liao
    • Lin Luo
    • Lin Xu
    • Ke‑Fei Yuan
    • Yong Zeng
  • View Affiliations

  • Published online on: November 22, 2018     https://doi.org/10.3892/mmr.2018.9688
  • Pages: 555-562
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Nicotinamide (Nam) has recently been characterized as an agent for tissue regeneration due to the observed pro‑proliferation effects. However, the effect of Nam on liver regeneration remains undetermined. In the present study, the potency of Nam as a regimen to promote liver regeneration and restore liver function was evaluated following partial hepatectomy (PH) on C57BL/6 mice. Ki‑67 immunohistochemical and cell cycle analyses demonstrated that exogenous Nam supplementation promoted the proliferation of hepatocytes and accelerated the recovery of liver tissue. The addition of Nam protected liver function following PH, as evidenced by hematoxylin and eosin staining of liver tissue morphology and measurement of serum liver injury markers. Notably, immunoblotting results revealed that the expression and activity of NAD‑dependent protein deacetylase sirtuin‑1 (SIRT1) were significantly upregulated following treatment with Nam, suggesting that Nam may promote liver regeneration through activation of SIRT1. The present study demonstrated that Nam regulated the process of liver regeneration and improved liver function by activating SIRT1, suggesting that Nam has the potency to be used for promoting liver regeneration following surgical resection.

References

1 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Llovet JM, Di Bisceglie AM, Bruix J, Kramer BS, Lencioni R, Zhu AX, Sherman M, Schwartz M, Lotze M, Talwalkar J, et al: Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst. 100:698–711. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Llovet JM, Brú C and Bruix J: Prognosis of hepatocellular carcinoma: The BCLC staging classification. Semin Liver Dis. 19:329–338. 1999. View Article : Google Scholar : PubMed/NCBI

4 

European Association For The Study Of The Liver; European Organisation For Research And Treatment Of Cancer: EASL-EORTC clinical practice guidelines: Management of hepatocellular carcinoma. J Hepatol. 56:908–943. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Bruix J and Sherman M: American Association for the Study of Liver Diseases: Management of hepatocellular carcinoma: An update. Hepatology. 53:1020–1022. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Lehmann K, Tschuor C, Rickenbacher A, Jang JH, Oberkofler CE, Tschopp O, Schultze SM, Raptis DA, Weber A, Graf R, et al: Liver failure after extended hepatectomy in mice is mediated by a p21-dependent barrier to liver regeneration. Gastroenterology. 143:1609–1619.e4. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Roayaie S, Jibara G, Tabrizian P, Park JW, Yang J, Yan L, Schwartz M, Han G, Izzo F, Chen M, et al: The role of hepatic resection in the treatment of hepatocellular cancer. Hepatology. 62:440–451. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Tremosini S, Reig M, de Lope CR, Forner A and Bruix J: Treatment of early hepatocellular carcinoma: Towards personalized therapy. Dig Liver Dis. 42 Suppl 3:S242–S248. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Clavien PA, Petrowsky H, DeOliveira ML and Graf R: Strategies for safer liver surgery and partial liver transplantation. N Eng J Med. 356:1545–1559. 2007. View Article : Google Scholar

10 

Clavien PA, Oberkofler CE, Raptis DA, Lehmann K, Rickenbacher A and El-Badry AM: What is critical for liver surgery and partial liver transplantation: Size or quality? Hepatology. 52:715–729. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Chen AC and Damian DL: Nicotinamide and the skin. Australas J Dermatol. 55:169–175. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Oblong JE: The evolving role of the NAD+/nicotinamide metabolome in skin homeostasis, cellular bioenergetics, and aging. DNA Repair (Amst). 23:59–63. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Stevens MJ, Li F, Drel VR, Abatan OI, Kim H, Burnett D, Larkin D and Obrosova IG: Nicotinamide reverses neurological and neurovascular deficits in streptozotocin diabetic rats. J Pharmacol Exp Ther. 320:458–464. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Kaneko S, Wang J, Kaneko M, Yiu G, Hurrell JM, Chitnis T, Khoury SJ and He Z: Protecting axonal degeneration by increasing nicotinamide adenine dinucleotide levels in experimental autoimmune encephalomyelitis models. J Neurosci. 26:9794–9804. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Thompson BC, Halliday GM and Damian DL: Nicotinamide enhances repair of arsenic and ultraviolet radiation-induced DNA damage in HaCaT keratinocytes and ex vivo human skin. PLoS One. 10:e01174912015. View Article : Google Scholar : PubMed/NCBI

16 

Ashkani Esfahani S, Khoshneviszadeh M, Namazi MR, Noorafshan A, Geramizadeh B, Nadimi E and Razavipour ST: Topical nicotinamide improves tissue regeneration in excisional full-thickness skin wounds: A stereological and pathological study. Trauma Mon. 20:e181932015. View Article : Google Scholar : PubMed/NCBI

17 

Gariani K, Ryu D, Menzies KJ, Yi HS, Stein S, Zhang H, Perino A, Lemos V, Katsyuba E, Jha P, et al: Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. J Hepatol. 66:132–141. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Lehwald N, Tao GZ, Jang KY, Papandreou I, Liu B, Liu B, Pysz MA, Willmann JK, Knoefel WT, Denko NC and Sylvester KG: β-Catenin regulates hepatic mitochondrial function and energy balance in mice. Gastroenterology. 143:754–764. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Eriksson S, Prigge JR, Talago EA, Arnér ES and Schmidt EE: Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver. Nat Commun. 6:64792015. View Article : Google Scholar : PubMed/NCBI

20 

Tummala KS, Gomes AL, Yilmaz M, Graña O, Bakiri L, Ruppen I, Ximénez-Embún P, Sheshappanavar V, Rodriguez-Justo M, Pisano DG, et al: Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell. 26:826–839. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Imai S, Armstrong CM, Kaeberlein M and Guarente L: Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 403:795–800. 2000. View Article : Google Scholar : PubMed/NCBI

22 

Timchenko NA, Harris TE, Wilde M, Bilyeu TA, Burgess-Beusse BL, Finegold MJ and Darlington GJ: CCAAT/enhancer binding protein alpha regulates p21 protein and hepatocyte proliferation in newborn mice. Mol Cell Biol. 17:7353–7361. 1997. View Article : Google Scholar : PubMed/NCBI

23 

Lai HS, Chen WJ and Chen KM: Energy substrate for liver regeneration after partial hepatectomy in rats: Effects of glucose vs fat. JPEN J Parenter Enteral Nutr. 16:152–156. 1992. View Article : Google Scholar : PubMed/NCBI

24 

Jin J, Iakova P, Jiang Y, Medrano EE and Timchenko NA: The reduction of SIRT1 in livers of old mice leads to impaired body homeostasis and to inhibition of liver proliferation. Hepatology. 54:989–998. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Li J, Dou X, Li S, Zhang X, Zeng Y and Song Z: Nicotinamide ameliorates palmitate-induced ER stress in hepatocytes via cAMP/PKA/CREB pathway-dependent Sirt1 upregulation. Biochim Biophys Acta. 1853:2929–2936. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Forbes SJ and Newsome PN: Liver regeneration-mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol. 13:473–485. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Cardiff RD, Miller CH and Munn RJ: Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc. 2014:655–658. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Ma S, Zhao Y, Sun J, Mu P and Deng Y: miR449a/SIRT1/PGC-1α is necessary for mitochondrial biogenesis induced by T-2 toxin. Front Pharmacol. 8:9542018. View Article : Google Scholar : PubMed/NCBI

29 

Wang S, Wang C, Turdi S, Richmond KL, Zhang Y and Ren J: ALDH2 protects against high fat diet-induced obesity cardiomyopathy and defective autophagy: Role of CaM kinase II, histone H3K9 methyltransferase SUV39H, Sirt1, and PGC-1α deacetylation. Int J Obes (Lond). 42:1073–1087. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Fausto N, Campbell JS and Riehle KJ: Liver regeneration. J Hepatol. 57:692–694. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Jin X, Zhang Z, Beer-Stolz D, Zimmers TA and Koniaris LG: Interleukin-6 inhibits oxidative injury and necrosis after extreme liver resection. Hepatology. 46:802–812. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Tajima T, Goda N, Fujiki N, Hishiki T, Nishiyama Y, Senoo-Matsuda N, Shimazu M, Soga T, Yoshimura Y, Johnson RS and Suematsu M: HIF-1alpha is necessary to support gluconeogenesis during liver regeneration. Biochem Biophys Res Commun. 387:789–794. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Bellet MM, Masri S, Astarita G, Sassone-Corsi P, Della Fazia MA and Servillo G: Histone deacetylase SIRT1 controls proliferation, circadian rhythm, and lipid metabolism during liver regeneration in mice. J Biol Chem. 291:23318–23329. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Jin J, Hong IH, Lewis K, Iakova P, Breaux M, Jiang Y, Sullivan E, Jawanmardi N, Timchenko L and Timchenko NA: Cooperation of C/EBP family proteins and chromatin remodeling proteins is essential for termination of liver regeneration. Hepatology. 61:315–325. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM and Puigserver P: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 434:113–118. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Li X, Zhang S, Blander G, Tse JG, Krieger M and Guarente L: SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell. 28:91–106. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Longo CR, Patel VI, Shrikhande GV, Scali ST, Csizmadia E, Daniel S, Sun DW, Grey ST, Arvelo MB and Ferran C: A20 protects mice from lethal radical hepatectomy by promoting hepatocyte proliferation via a p21waf1-dependent mechanism. Hepatology. 42:156–164. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Okumura S, Teratani T, Fujimoto Y, Zhao X, Tsuruyama T, Masano Y, Kasahara N, Iida T, Yagi S, Uemura T, et al: Oral administration of polyamines ameliorates liver ischemia/reperfusion injury and promotes liver regeneration in rats. Liver Transpl. 22:1231–1244. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Hwang ES and Song SB: Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell Mol Life Sci. 74:3347–3362. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Weymann A, Hartman E, Gazit V, Wang C, Glauber M, Turmelle Y and Rudnick DA: p21 is required for dextrose-mediated inhibition of mouse liver regeneration. Hepatology. 50:207–215. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Brinkmann A, Katz N, Sasse D and Jungermann K: Increase of the gluconeogenic and decrease of the glycolytic capacity of rat liver with a change of the metabolic zonation after partial hepatectomy. Hoppe Seylers Z Physiol Chem. 359:1561–1571. 1978. View Article : Google Scholar : PubMed/NCBI

42 

Delgado-Coello B, Briones-Orta MA, Macias-Silva M and Mas-Oliva J: Cholesterol: Recapitulation of its active role during liver regeneration. Liver Int. 31:1271–1284. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW and Schibler U: SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 134:317–328. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Chang HC and Guarente L: SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 153:1448–1460. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP and Sassone-Corsi P: The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 134:329–340. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Sahar S and Sassone-Corsi P: Metabolism and cancer: The circadian clock connection. Nat Rev Cancer. 9:886–896. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Imai S and Guarente L: Ten years of NAD-dependent SIR2 family deacetylases: Implications for metabolic diseases. Trends Pharmacol Sci. 31:212–220. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Haigis MC and Sinclair DA: Mammalian sirtuins: Biological insights and disease relevance. Annu Rev Pathol. 5:253–295. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Jang SY, Kang HT and Hwang ES: Nicotinamide-induced mitophagy: Event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J Biol Chem. 287:19304–19314. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Liu D, Gharavi R, Pitta M, Gleichmann M and Mattson MP: Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromolecular Med. 11:28–42. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

January 2019
Volume 19 Issue 1

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wan, H., Li, J., Liao, H., Liao, M., Luo, L., Xu, L. ... Zeng, Y. (2019). Nicotinamide induces liver regeneration and improves liver function by activating SIRT1. Molecular Medicine Reports, 19, 555-562. https://doi.org/10.3892/mmr.2018.9688
MLA
Wan, H., Li, J., Liao, H., Liao, M., Luo, L., Xu, L., Yuan, K., Zeng, Y."Nicotinamide induces liver regeneration and improves liver function by activating SIRT1". Molecular Medicine Reports 19.1 (2019): 555-562.
Chicago
Wan, H., Li, J., Liao, H., Liao, M., Luo, L., Xu, L., Yuan, K., Zeng, Y."Nicotinamide induces liver regeneration and improves liver function by activating SIRT1". Molecular Medicine Reports 19, no. 1 (2019): 555-562. https://doi.org/10.3892/mmr.2018.9688