Open Access

Febuxostat inhibits TGF‑β1‑induced epithelial‑mesenchymal transition via downregulation of USAG‑1 expression in Madin‑Darby canine kidney cells in vitro

  • Authors:
    • Linghong Lu
    • Jiajun Zhu
    • Yaqian Zhang
    • Yanxia Wang
    • Shu Zhang
    • Anzhou Xia
  • View Affiliations

  • Published online on: January 2, 2019     https://doi.org/10.3892/mmr.2019.9806
  • Pages: 1694-1704
  • Copyright: © Lu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Our previous study demonstrated that febuxostat, a xanthine oxidase inhibitor, can alleviate kidney dysfunction and ameliorate renal tubulointerstitial fibrosis in a rat unilateral ureteral obstruction (UUO) model; however, the underlying mechanisms remain unknown. Increasing evidence has revealed that epithelial‑mesenchymal transition (EMT) is one of the key mechanisms mediating the progression of renal tubulointerstitial fibrosis in chronic kidney disease (CKD). Uterine sensitization‑associated gene‑1 (USAG‑1), a kidney‑specific bone morphogenetic protein antagonist, is involved in the development of numerous types of CKDs. The present study aimed to investigate the role of febuxostat in the process of EMT in Madin‑Darby canine kidney (MDCK) cells in vitro. Western blotting, reverse transcription‑semiquantitative polymerase chain reaction analysis and immunofluorescence staining were used to evaluate the expression levels of bone morphogenetic protein 7, USAG‑1, α‑smooth muscle actin (α‑SMA) and E‑cadherin, respectively. The results demonstrated that the expression of USAG‑1 and α‑SMA increased, and that of E‑cadherin decreased significantly in MDCK cells following treatment with transforming growth factor‑β1 (TGF‑β1). The application of small interfering RNA‑USAG‑1 potently inhibited TGF‑β1‑induced EMT. Subsequently, the effects of febuxostat on TGF‑β1‑induced EMT was investigated. The results demonstrated that febuxostat downregulated the expression of USAG‑1, and reversed TGF‑β1‑induced EMT in MDCK cells. Furthermore, pretreatment with febuxostat significantly restored the decreased expression levels of phosphorylated Smad1/5/8 induced by TGF‑β1 in MDCK cells. The results of the present study suggested that USAG‑1 may be involved in the EMT process of MDCK cells induced by TGF‑β1, and febuxostat inhibited EMT by activating the Smad1/5/8 signaling pathway via downregulating the expression of USAG‑1 in MDCK cells.
View Figures
View References

Related Articles

Journal Cover

March-2019
Volume 19 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Lu L, Zhu J, Zhang Y, Wang Y, Zhang S and Xia A: Febuxostat inhibits TGF‑β1‑induced epithelial‑mesenchymal transition via downregulation of USAG‑1 expression in Madin‑Darby canine kidney cells in vitro. Mol Med Rep 19: 1694-1704, 2019
APA
Lu, L., Zhu, J., Zhang, Y., Wang, Y., Zhang, S., & Xia, A. (2019). Febuxostat inhibits TGF‑β1‑induced epithelial‑mesenchymal transition via downregulation of USAG‑1 expression in Madin‑Darby canine kidney cells in vitro. Molecular Medicine Reports, 19, 1694-1704. https://doi.org/10.3892/mmr.2019.9806
MLA
Lu, L., Zhu, J., Zhang, Y., Wang, Y., Zhang, S., Xia, A."Febuxostat inhibits TGF‑β1‑induced epithelial‑mesenchymal transition via downregulation of USAG‑1 expression in Madin‑Darby canine kidney cells in vitro". Molecular Medicine Reports 19.3 (2019): 1694-1704.
Chicago
Lu, L., Zhu, J., Zhang, Y., Wang, Y., Zhang, S., Xia, A."Febuxostat inhibits TGF‑β1‑induced epithelial‑mesenchymal transition via downregulation of USAG‑1 expression in Madin‑Darby canine kidney cells in vitro". Molecular Medicine Reports 19, no. 3 (2019): 1694-1704. https://doi.org/10.3892/mmr.2019.9806