Estradiol induces cell proliferation in MCF‑7 mammospheres through HER2/COX‑2

  • Authors:
    • Chin‑Hu Wu
    • Hui‑Yu Chuang
    • Chiu‑Lin Wang
    • Chia‑Yi Hsu
    • Cheng‑Yu Long
    • Tsung‑Hua Hsieh
    • Eing‑Mei Tsai
  • View Affiliations

  • Published online on: January 18, 2019     https://doi.org/10.3892/mmr.2019.9879
  • Pages: 2341-2349
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cluster of differentiation (CD)44+/CD24– breast cancer cells have stem cell‑like characteristics and are potent initiators of tumorigenesis. Mammosphere cells can partially initiate breast tumorigenesis by inducing estradiol (E2)‑dependent breast cancer cells. However, the mechanisms by which E2 mediates cancer formation in MCF‑7 mammosphere (MS) cells have remained elusive. In the present study, MS cells were isolated by sphere culture. It was possible to maintain these MS cells in culture for long periods of time, while retaining the CD44+/CD24– stem cell marker status. The CD44+/CD24– status was confirmed by flow cytometry. Furthermore, the stem‑cell markers Musashi‑1, cytokeratin (CK)7 and CK19 were identified by immunofluorescence microscopy. It was revealed that treatment of MS cells with E2 increased the expression of CD44, whereas decreased the expression of CD24 on MS cells. In addition, treatment with E2 increased colony formation by MS cells. E2 also induced cyclooxygenase‑2 (COX‑2) expression in MS cells, which promoted their proliferation through the estrogen receptor/human epidermal growth factor receptor 2 (HER2)/mitogen‑activated protein kinase/phosphoinositide‑3 kinase signaling pathway. The results suggested a tumorigenic mechanism by which E2 promotes tumor cell proliferation via HER2/COX‑2 signaling. The present study provided evidence for the molecular impact of E2 on breast tumorigenesis, and suggested possible strategies for preventing and treating human breast cancer.

References

1 

Martelotto LG, Ng CK, Piscuoglio S, Weigelt B and Reis-Filho JS: Breast cancer intra-tumor heterogeneity. Breast Cancer Res. 16:2102014. View Article : Google Scholar : PubMed/NCBI

2 

Dontu G, Liu S and Wicha MS: Stem cells in mammary development and carcinogenesis: Implications for prevention and treatment. Stem Cell Rev. 1:207–213. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Fillmore C and Kuperwasser C: Human breast cancer stem cell markers CD44 and CD24: Enriching for cells with functional properties in mice or in man? Breast Cancer Res. 9:3032007. View Article : Google Scholar : PubMed/NCBI

4 

Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R Jr, Badve S and Nakshatri H: CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: An early step necessary for metastasis. Breast Cancer Res. 8:R592006. View Article : Google Scholar : PubMed/NCBI

5 

Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV and Varticovski L: Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res. 10:R102008. View Article : Google Scholar : PubMed/NCBI

6 

Weiswald LB, Bellet D and Dangles-Marie V: Spherical cancer models in tumor biology. Neoplasia. 17:1–15. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Serrano M: The INK4a/ARF locus in murine tumorigenesis. Carcinogenesis. 21:865–869. 2000. View Article : Google Scholar : PubMed/NCBI

8 

Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ and Wicha MS: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17:1253–1270. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL and Weinberg RA: Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 145:926–940. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Dey D, Saxena M, Paranjape AN, Krishnan V, Giraddi R, Kumar MV, Mukherjee G and Rangarajan A: Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture. PLoS One. 4:e53292009. View Article : Google Scholar : PubMed/NCBI

11 

Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B, Brisken C, Minucci S, Di Fiore PP and Pelicci PG: The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell. 138:1083–1095. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Manuel Iglesias J, Beloqui I, Garcia-Garcia F, Leis O, Vazquez-Martin A, Eguiara A, Cufi S, Pavon A, Menendez JA, Dopazo J and Martin AG: Mammosphere formation in breast carcinoma cell lines depends upon expression of E-cadherin. PLoS One. 8:e772812013. View Article : Google Scholar : PubMed/NCBI

13 

Lei B, Zhang XY, Zhou JP, Mu GN, Li YW, Zhang YX and Pang D: Transcriptome sequencing of HER2-positive breast cancer stem cells identifies potential prognostic marker. Tumour Biol. 37:14757–14764. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Lo PK and Chen H: Cancer stem cells and cells of origin in MMTV-Her2/neu-induced mammary tumorigenesis. Oncogene. 32:1338–1340. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Alexander PB, Chen R, Gong C, Yuan L, Jasper JS, Ding Y, Markowitz GJ, Yang P, Xu X, McDonnell DP, et al: Distinct receptor tyrosine kinase subsets mediate anti-HER2 drug resistance in breast cancer. J Biol Chem. 292:748–759. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Ma H, Lu Y, Malone KE, Marchbanks PA, Deapen DM, Spirtas R, Burkman RT, Strom BL, McDonald JA, Folger SG, et al: Mortality risk of black women and white women with invasive breast cancer by hormone receptors, HER2, and p53 status. BMC Cancer. 13:2252013. View Article : Google Scholar : PubMed/NCBI

17 

Blume-Jensen P and Hunter T: Oncogenic kinase signalling. Nature. 411:355–365. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Harari D and Yarden Y: Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene. 19:6102–6114. 2000. View Article : Google Scholar : PubMed/NCBI

19 

Wang KH, Kao AP, Chang CC, Lee JN, Hou MF, Long CY, Chen HS and Tsai EM: Increasing CD44+/CD24(−) tumor stem cells and upregulation of COX-2 and HDAC6, as major functions of HER2 in breast tumorigenesis. Mol Cancer. 9:2882010. View Article : Google Scholar : PubMed/NCBI

20 

Korkaya H, Paulson A, Iovino F and Wicha MS: HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene. 27:6120–6130. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Pickl M and Ries CH: Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene. 28:461–468. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Oak PS, Kopp F, Thakur C, Ellwart JW, Rapp UR, Ullrich A, Wagner E, Knyazev P and Roidl A: Combinatorial treatment of mammospheres with trastuzumab and salinomycin efficiently targets HER2-positive cancer cells and cancer stem cells. Int J Cancer. 131:2808–2819. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Yarden Y: Biology of HER2 and its importance in breast cancer. Oncology. 61 Suppl 2:S1–S13. 2001. View Article : Google Scholar

24 

Belsches-Jablonski AP, Biscardi JS, Peavy DR, Tice DA, Romney DA and Parsons SJ: Src family kinases and HER2 interactions in human breast cancer cell growth and survival. Oncogene. 20:1465–1475. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Zhang W, Ding W, Chen Y, Feng M, Ouyang Y, Yu Y and He Z: Up-regulation of breast cancer resistance protein plays a role in HER2-mediated chemoresistance through PI3K/Akt and nuclear factor-kappa B signaling pathways in MCF7 breast cancer cells. Acta Biochim Biophys Sin (Shanghai). 43:647–653. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Hsieh TH, Tsai CF, Hsu CY, Kuo PL, Lee JN, Chai CY, Hou MF, Chang CC, Long CY, Ko YC and Tsai EM: Phthalates stimulate the epithelial to mesenchymal transition through an HDAC6-dependent mechanism in human breast epithelial stem cells. Toxicol Sci. 128:365–376. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Wang R, Lv Q, Meng W, Tan Q, Zhang S, Mo X and Yang X: Comparison of mammosphere formation from breast cancer cell lines and primary breast tumors. J Thorac Dis. 6:829–837. 2014.PubMed/NCBI

28 

Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA and Daidone MG: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65:5506–5511. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Fu YZ, Yan YY, He M, Xiao QH, Yao WF, Zhao L, Wu HZ, Yu ZJ, Zhou MY, Lv MT, et al: Salinomycin induces selective cytotoxicity to MCF-7 mammosphere cells through targeting the Hedgehog signaling pathway. Oncol Rep. 35:912–922. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K and Tang DG: Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res. 65:6207–6219. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Hsieh TH, Tsai CF, Hsu CY, Kuo PL, Hsi E, Suen JL, Hung CH, Lee JN, Chai CY, Wang SC and Tsai EM: n-Butyl benzyl phthalate promotes breast cancer progression by inducing expression of lymphoid enhancer factor 1. PLoS One. 7:e427502012. View Article : Google Scholar : PubMed/NCBI

33 

Götte M, Wolf M, Staebler A, Buchweitz O, Kelsch R, Schüring AN and Kiesel L: Increased expression of the adult stem cell marker Musashi-1 in endometriosis and endometrial carcinoma. J Pathol. 215:317–329. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Michel M, Török N, Godbout MJ, Lussier M, Gaudreau P, Royal A and Germain L: Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: Keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci. 109:1017–1028. 1996.PubMed/NCBI

35 

Larouche D, Hayward C, Cuffley K and Germain L: Keratin 19 as a stem cell marker in vivo and in vitro. Methods Mol Biol. 289:103–110. 2005.PubMed/NCBI

36 

Nikpour P, Mowla SJ, Forouzandeh-Moghaddam M and Ziaee SA: The stem cell self-renewal gene, Musashi 1, is highly expressed in tumor and non-tumor samples of human bladder. Indian J Cancer. 50:214–218. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Kawai T, Yasuchika K, Ishii T, Katayama H, Yoshitoshi EY, Ogiso S, Kita S, Yasuda K, Fukumitsu K, Mizumoto M, et al: Keratin 19, a cancer stem cell marker in human hepatocellular carcinoma. Clin Cancer Res. 21:3081–3091. 2015. View Article : Google Scholar : PubMed/NCBI

38 

El Sakka D, Gaber MA, Abdou AG, Wahed MA, Saleh AA and Shehata W: Stem cell markers (Cytokeratin 17 and Cytokeratin 19) in scarring and nonscarring alopecia. J Cutan Aesthet Surg. 9:165–171. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Rajendran V and Jain MV: In vitro tumorigenic assay: Colony forming assay for cancer stem cells. Methods Mol Biol 1692. 89–95. 2018. View Article : Google Scholar

40 

Vadlamudi R, Mandal M, Adam L, Steinbach G, Mendelsohn J and Kumar R: Regulation of cyclooxygenase-2 pathway by HER2 receptor. Oncogene. 18:305–314. 1999. View Article : Google Scholar : PubMed/NCBI

41 

Lanza-Jacoby S, Burd R, Rosato FE Jr, McGuire K, Little J, Nougbilly N and Miller S: Effect of simultaneous inhibition of epidermal growth factor receptor and cyclooxygenase-2 in HER-2/neu-positive breast cancer. Clin Cancer Res. 12:6161–6169. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Pattarozzi A, Gatti M, Barbieri F, Würth R, Porcile C, Lunardi G, Ratto A, Favoni R, Bajetto A, Ferrari A and Florio T: 17beta-estradiol promotes breast cancer cell proliferation-inducing stromal cell-derived factor-1-mediated epidermal growth factor receptor transactivation: Reversal by gefitinib pretreatment. Mol Pharmacol. 73:191–202. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Thapa R and Wilson GD: The importance of CD44 as a stem cell biomarker and therapeutic target in cancer. Stem Cells Int 2016. 20872042016.

44 

Cauley JA, Lucas FL, Kuller LH, Stone K, Browner W and Cummings SR: Elevated serum estradiol and testosterone concentrations are associated with a high risk for breast cancer. Study of osteoporotic fractures research group. Ann Intern Med. 130:270–277. 1999. View Article : Google Scholar : PubMed/NCBI

45 

Yun SP, Lee MY, Ryu JM, Song CH and Han HJ: Role of HIF-1alpha and VEGF in human mesenchymal stem cell proliferation by 17beta-estradiol: Involvement of PKC, PI3K/Akt, and MAPKs. Am J Physiol Cell Physiol. 296:C317–C326. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Hong L, Colpan A and Peptan IA: Modulations of 17-beta estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. Tissue Eng. 12:2747–2753. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Clarke RB, Spence K, Anderson E, Howell A, Okano H and Potten CS: A A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol. 277:443–456. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Ithimakin S, Day KC, Malik F, Zen Q, Dawsey SJ, Bersano-Begey TF, Quraishi AA, Ignatoski KW, Daignault S, Davis A, et al: HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: Implications for efficacy of adjuvant trastuzumab. Cancer Res. 73:1635–1646. 2013. View Article : Google Scholar : PubMed/NCBI

49 

North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, et al: Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature. 447:1007–1011. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Dirix LY, Ignacio J, Nag S, Bapsy P, Gomez H, Raghunadharao D, Paridaens R, Jones S, Falcon S, Carpentieri M, et al: Treatment of advanced hormone-sensitive breast cancer in postmenopausal women with exemestane alone or in combination with celecoxib. J Clin Oncol. 26:1253–1259. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN and O'Keefe RJ: Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest. 109:1405–1415. 2002. View Article : Google Scholar : PubMed/NCBI

52 

Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, Gleave M and Wu H: Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 72:1878–1889. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, et al: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 1:555–567. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

March 2019
Volume 19 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wu, C., Chuang, H., Wang, C., Hsu, C., Long, C., Hsieh, T., & Tsai, E. (2019). Estradiol induces cell proliferation in MCF‑7 mammospheres through HER2/COX‑2. Molecular Medicine Reports, 19, 2341-2349. https://doi.org/10.3892/mmr.2019.9879
MLA
Wu, C., Chuang, H., Wang, C., Hsu, C., Long, C., Hsieh, T., Tsai, E."Estradiol induces cell proliferation in MCF‑7 mammospheres through HER2/COX‑2". Molecular Medicine Reports 19.3 (2019): 2341-2349.
Chicago
Wu, C., Chuang, H., Wang, C., Hsu, C., Long, C., Hsieh, T., Tsai, E."Estradiol induces cell proliferation in MCF‑7 mammospheres through HER2/COX‑2". Molecular Medicine Reports 19, no. 3 (2019): 2341-2349. https://doi.org/10.3892/mmr.2019.9879