Polygonatum sibiricum polysaccharide alleviates inflammatory cytokines and promotes glucose uptake in high‑glucose‑ and high‑insulin‑induced 3T3‑L1 adipocytes by promoting Nrf2 expression

  • Authors:
    • Jialuo Cai
    • Yilin Zhu
    • Yajie Zuo
    • Qiaozhen Tong
    • Zhiguo Zhang
    • Lei Yang
    • Xiaoping Li
    • Gangqiang Yi
  • View Affiliations

  • Published online on: August 29, 2019     https://doi.org/10.3892/mmr.2019.10626
  • Pages: 3951-3958
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Polygonatum sibiricum polysaccharide (PSP) has been shown to alleviate hyperglycemia and reduce oxidative stress to delay the progression of diabetic retinopathy and cataracts. However, its role and underlying mechanisms in regulating type 2 diabetes mellitus (T2DM) remain unclear. Nuclear factor erythroid 2‑related factor 2 (Nrf2) activation plays a protective role in T2DM. The present study focused on the effect of PSP on inflammatory cytokine secretion and Nrf2 expression in the adipocytes of T2DM patients. In this study, high‑glucose‑ and high‑insulin‑induced 3T3‑L1 adipocytes were used to mimic insulin‑resistant (IR)‑3T3‑L1 adipocytes. Furthermore, the effect and underlying mechanisms of PSP on inflammation and glucose uptake in IR‑3T3‑L1 adipocytes were investigated. The present study found that proliferation after 50, 100 and 250 µg/ml PSP treatment had no significant change in normal 3T3‑L1 adipocytes. A total of 50, 100 and 250 µg/ml of PSP also alleviated IL‑1β, IL‑6, and TNF‑α levels and promoted proliferation, glucose uptake, and glucose transporter 4 expression in IR‑3T3‑L1 adipocytes. Furthermore, 50, 100 and 250 µg/ml PSP promoted Nrf2 and HO‑1 expression. However, silencing Nrf2 expression reversed the effect of 100 µg/ml PSP in IR‑3T3‑L1 adipocytes. In conclusion, these results suggest that PSP alleviates inflammatory cytokines and promotes glucose uptake in IR‑3T3‑L1 adipocytes by promoting Nrf2 expression. PSP may be a potential therapeutic agent for T2DM treatment by promoting Nrf2 expression.

References

1 

NCD Risk Factor Collaboration (NCD-RisC), . Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 387:1513–1530. 2016. View Article : Google Scholar : PubMed/NCBI

2 

He G, Liang Y, Chen Y, Yang W, Liu JS, Yang MQ and Guan R: A hotspots analysis-relation discovery representation model for revealing diabetes mellitus and obesity. BMC Syst Biol 12(Suppl 7). 1162018. View Article : Google Scholar

3 

Scheen AJ and Paquot N: Obesity. A new paradigm for treating obesity and diabetes mellitus. Nat Rev Endocrinol. 11:196–198. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Guilherme A, Virbasius JV, Puri V and Czech MP: Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 9:367–377. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Hasegawa Y, Ikeda K, Chen Y, Alba DL, Stifler D, Shinoda K, Hosono T, Maretich P, Yang Y, Ishigaki Y, et al: Repression of adipose tissue fibrosis through a PRDM16-GTF2IRD1 complex improves systemic glucose homeostasis. Cell Metab. 27:180–194.e6. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Chen L, Lu W and Li Y: Berberine ameliorates type 2 diabetes via modulation of Bifidobacterium species, tumor necrosis factor-α, and lipopolysaccharide. Int J Clin Exp Med. 9:9365–9372. 2016.

7 

Chen X, Yu J and Shi J: Management of diabetes mellitus with puerarin, a natural isoflavone from pueraria lobata. Am J Chin Med. 46:1771–1789. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Chen M, Liao Z, Lu B, Wang M, Lin L, Zhang S, Li Y, Liu D, Liao Q and Xie Z: Huang-Lian-Jie-Du-Decoction ameliorates hyperglycemia and insulin resistant in association with gut microbiota modulation. Front Microbiol. 9:23802018. View Article : Google Scholar : PubMed/NCBI

9 

Zhao P, Zhao C, Li X, Gao Q, Huang L, Xiao P and Gao W: The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology. J Ethnopharmacol. 214:274–291. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Cui X, Wang S, Cao H, Guo H, Li Y, Xu F, Zheng M, Xi X and Han C: A review: The bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides. Molecules. 23:E11702018. View Article : Google Scholar : PubMed/NCBI

11 

Liu N, Dong Z, Zhu X, Xu H and Zhao Z: Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in Balb/c mice. Int J Biol Macromol. 107:796–802. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Yelithao K, Surayot U, Lee JH and You S: RAW264.7 cell activating glucomannans extracted from rhizome of Polygonatum sibiricum. Prev Nutr Food Sci. 21:245–254. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Zeng GF, Zhang ZY, Lu L, Xiao DQ, Xiong CX, Zhao YX and Zong SH: Protective effects of Polygonatum sibiricum polysaccharide on ovariectomy-induced bone loss in rats. J Ethnopharmacol. 136:224–229. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Zhu X, Wu W, Chen X, Yang F, Zhang J and Hou J: Protective effects of Polygonatum sibiricum polysaccharide on acute heart failure in rats 1. Acta Cir Bras. 33:868–878. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Wang Y, Qin S, Pen G, Chen D, Han C, Miao C, Lu B, Su C, Feng S, Li W, et al: Original research: Potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozocin-induced diabetic rats' model. Exp Biol Med (Maywood). 242:92–101. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Wang Y, Lan C, Liao X, Chen D, Song W and Zhang Q: Polygonatum sibiricum polysaccharide potentially attenuates diabetic retinal injury in a diabetic rat model. J Diabetes Investig. 10:915–924. 2019.PubMed/NCBI

17 

Ahmed SM, Luo L, Namani A, Wang XJ and Tang X: Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis. 1863:585–597. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Lu MC, Ji JA, Jiang ZY and You QD: The Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: An Update. Med Res Rev. 36:924–963. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Yoo EJ, Lee HH, Ye BJ, Lee JH, Lee CY, Kang HJ, Jeong GW, Park H, Lim SW, Lee-Kwon W, et al: TonEBP suppresses the HO-1 gene by blocking recruitment of Nrf2 to its promoter. Front Immunol. 10:8502019. View Article : Google Scholar : PubMed/NCBI

20 

Cheng Y, Yang C, Luo D, Li X, Le XC and Rong J: N-Propargyl caffeamide skews macrophages towards a resolving M2-like phenotype against myocardial ischemic injury via activating Nrf2/HO-1 pathway and inhibiting NF-kB pathway. Cell Physiol Biochem. 47:2544–2557. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Yu ZW, Li D, Ling WH and Jin TR: Role of nuclear factor (erythroid-derived 2)-like 2 in metabolic homeostasis and insulin action: A novel opportunity for diabetes treatment? World J Diabetes. 3:19–28. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Liao SP, Wu WQ, Zeng J and Wu Y: miR-146a regulates inflammatory cytokines and reverses high-glucose- and high-insulin-induced insulin resistance in 3T3-L1 adipocytes by targeting Traf6 through the NF-κB signaling pathway. Int J Clin Exp Med. 11:1708–1716. 2018.

23 

Liu C, Feng X, Li Q, Wang Y, Li Q and Hua M: Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis. Cytokine. 86:100–109. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J and Feve B: Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 17:4–12. 2006.PubMed/NCBI

25 

Su YC, Ou HY, Wu HT, Wu P, Chen YC, Su BH, Shiau AL, Chang CJ and Wu CL: Prothymosin-α overexpression contributes to the development of insulin resistance. J Clin Endocrinol Metab. 100:4114–4123. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Nie Y, Ma RC, Chan JC, Xu H and Xu G: Glucose-dependent insulinotropic peptide impairs insulin signaling via inducing adipocyte inflammation in glucose-dependent insulinotropic peptide receptor-overexpressing adipocytes. FASEB J. 26:2383–2393. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Sun L, Li X, Li G, Dai B and Tan W: Actinidia chinensis planch. improves the indices of antioxidant and anti-inflammation status of type 2 diabetes mellitus by activating Keap1 and Nrf2 via the upregulation of microRNA-424. Oxid Med Cell Longev. 2017:70387892017. View Article : Google Scholar : PubMed/NCBI

28 

Uruno A, Yagishita Y and Yamamoto M: The Keap1-Nrf2 system and diabetes mellitus. Arch Biochem Biophys. 566:76–84. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Song Y, Huang L and Yu J: Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling. J Neuroimmunol. 301:1–6. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Cai, J., Zhu, Y., Zuo, Y., Tong, Q., Zhang, Z., Yang, L. ... Yi, G. (2019). Polygonatum sibiricum polysaccharide alleviates inflammatory cytokines and promotes glucose uptake in high‑glucose‑ and high‑insulin‑induced 3T3‑L1 adipocytes by promoting Nrf2 expression. Molecular Medicine Reports, 20, 3951-3958. https://doi.org/10.3892/mmr.2019.10626
MLA
Cai, J., Zhu, Y., Zuo, Y., Tong, Q., Zhang, Z., Yang, L., Li, X., Yi, G."Polygonatum sibiricum polysaccharide alleviates inflammatory cytokines and promotes glucose uptake in high‑glucose‑ and high‑insulin‑induced 3T3‑L1 adipocytes by promoting Nrf2 expression". Molecular Medicine Reports 20.4 (2019): 3951-3958.
Chicago
Cai, J., Zhu, Y., Zuo, Y., Tong, Q., Zhang, Z., Yang, L., Li, X., Yi, G."Polygonatum sibiricum polysaccharide alleviates inflammatory cytokines and promotes glucose uptake in high‑glucose‑ and high‑insulin‑induced 3T3‑L1 adipocytes by promoting Nrf2 expression". Molecular Medicine Reports 20, no. 4 (2019): 3951-3958. https://doi.org/10.3892/mmr.2019.10626