Open Access

Study on the therapeutic effect of neural progenitor cells in mice of a glioma murine model

  • Authors:
    • Guozheng Xu
    • Ying Liu
    • Yi Zhang
    • Qian Yang
    • Bo Diao
  • View Affiliations

  • Published online on: January 28, 2016     https://doi.org/10.3892/ol.2016.4158
  • Pages: 2067-2070
  • Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glioma is a common malignacy of the brain that affects elderly patients in particular. Despite treatment, however, the survival rate is 12 months. The aim of the present study was to examine the therapeutic effect of neural progenitor cells (NPCs) on a glioma murine model, and to determine the possible mechanism of action. A glioma murine model was constructed and the tumor volume and tumor growth rate were measured. The therapeutic effect of cell injection on the glioma mouse model mice was confirmed. The quantitative polymerase chain reaction method was used to detect the expression of proto‑oncogene and tumor suppressor gene. Intracranial injection of NPCs was performed to determine cell apoptosis. Preliminary results showed the mechanism of cell therapy effect at the transcription and cellular level. Compared with the model group, the tumor volume of the mice of the cell therapy group was significantly reduced from the 6th to 8th week, and the tumor growth rate was downregulated. The mechanism of action identified that NPCs regulate gene expression in tumor tissues, increase the expression of tumor suppressor gene, downregulate the gene expression of tumor cells, and reverse the proto‑oncogene and imbalance of gene expression in gliomas. In conclusion, the new type of cell injection method can regulate the proto‑oncogene of tumor tissue and tumor suppressor gene, improve the function phenotype of the cell, and effectively improve the clinical symptoms of mice with gliomas.

References

1 

Goodenberger ML and Jenkins RB: Genetics of adult glioma. Cancer Genet. 205:613–621. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Buck JR, McKinley ET, Fu A, Abel TW, Thompson RC, Chambless L, Watchmaker JM, Harty JP, Cooper MK and Manning HC: Preclinical TSPO Ligand PET to Visualize Human Glioma Xenotransplants: A Preliminary Study. PLoS One. 10:e01416592015. View Article : Google Scholar : PubMed/NCBI

3 

Codo P, Weller M, Meister G, Szabo E, Steinle A, Wolter M, Reifenberger G and Roth P: MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape. Oncotarget. 5:7651–7662. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Breunig JJ, Levy R, Antonuk CD, Molina J, Dutra-Clarke M, Park H, Akhtar AA, Kim GB, Hu X, Bannykh SI, et al: Ets factors regulate neural stem cell depletion and gliogenesis in Ras Pathway Glioma. Cell Reports. 12:258–271. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Boisselier B, Gállego Pérez-Larraya J, Rossetto M, Labussière M, Ciccarino P, Marie Y, Delattre JY and Sanson M: Detection of IDH1 mutation in the plasma of patients with glioma. Neurology. 79:1693–1698. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Blough MD, Beauchamp DC, Westgate MR, Kelly JJ and Cairncross JG: Effect of aberrant p53 function on temozolomide sensitivity of glioma cell lines and brain tumor initiating cells from glioblastoma. J Neurooncol. 102:1–7. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Lalezari S, Chou AP, Tran A, Solis OE, Khanlou N, Chen W, Li S, Carrillo JA, Chowdhury R, Selfridge J, et al: Combined analysis of O6-methylguanine-DNA methyltransferase protein expression and promoter methylation provides optimized prognostication of glioblastoma outcome. Neuro-oncol. 15:370–381. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Parkinson JF, Wheeler HR, Clarkson A, McKenzie CA, Biggs MT, Little NS, Cook RJ, Messina M, Robinson BG and McDonald KL: Variation of O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation in serial samples in glioblastoma. J Neurooncol. 87:71–78. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, et al: Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. Proc Natl Acad Sci USA. 97:12846–12851. 2000. View Article : Google Scholar : PubMed/NCBI

10 

Barami K: Relationship of neural stem cells with their vascular niche: implications in the malignant progression of gliomas. J Clin Neurosci. 15:1193–1197. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Sanai N, Alvarez-Buylla A and Berger MS: Neural stem cells and the origin of gliomas. N Engl J Med. 353:811–822. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Grauer OM, Molling JW, Bennink E, Toonen LW, Sutmuller RP, Nierkens S and Adema GJ: TLR ligands in the local treatment of established intracerebral murine gliomas. J Immunol. 181:6720–6729. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Szatmári T, Lumniczky K, Désaknai S, Trajcevski S, Hídvégi EJ, Hamada H and Sáfrány G: Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci. 97:546–553. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR and Barnholtz-Sloan JS: The epidemiology of glioma in adults: a ‘state of the science’ review. Neuro-Oncol. 16:899–913. 2014. View Article : Google Scholar

15 

Lee SG, Kim K, Kegelman TP, Dash R, Das SK, Choi JK, Emdad L, Howlett EL, Jeon HY, Su ZZ, et al: Oncogene AEG-1 promotes glioma-induced neurodegeneration by increasing glutamate excitotoxicity. Cancer Res. 71:6514–6523. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Sano M, Genkai N, Yajima N, Tsuchiya N, Homma J, Tanaka R, Miki T and Yamanaka R: Expression level of ECT2 proto-oncogene correlates with prognosis in glioma patients. Oncol Rep. 16:1093–1098. 2006.PubMed/NCBI

17 

ten Haaf A, Bektas N, von Serenyi S, Losen I, Arweiler EC, Hartmann A, Knüchel R and Dahl E: Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer. 9:2982009. View Article : Google Scholar : PubMed/NCBI

18 

Suzuki T, Izumoto S, Wada K, Fujimoto Y, Maruno M, Yamasaki M, Kanemura Y, Shimazaki T, Okano H and Yoshimine T: Inhibition of glioma cell proliferation by neural stem cell factor. J Neurooncol. 74:233–239. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Tran TT, Uhl M, Ma JY, Janssen L, Sriram V, Aulwurm S, Kerr I, Lam A, Webb HK, Kapoun AM, et al: Inhibiting TGF-beta signaling restores immune surveillance in the SMA-560 glioma model. Neuro-oncol. 9:259–270. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Orian JM, Vasilopoulos K, Yoshida S, Kaye AH, Chow CW and Gonzales MF: Overexpression of multiple oncogenes related to histological grade of astrocytic glioma. Br J Cancer. 66:106–112. 1992. View Article : Google Scholar : PubMed/NCBI

21 

Zhu R, Kang S and Wu D: Expression of p53, c-erbB1, c-myc and p16 gene proteins in human glioma. Zhonghua Bing Li Xue Za Zhi. 26:343–345. 1997.(In Chinese). PubMed/NCBI

22 

Zheng X, Yao Y, Xu Q, Tu K and Liu Q: Evaluation of glioma-associated oncogene 1 expression and its correlation with the expression of sonic hedgehog, E-cadherin and S100a4 in human hepatocellular carcinoma. Mol Med Rep. 3:965–970. 2010.PubMed/NCBI

23 

Ohta M, Tateishi K, Kanai F, Watabe H, Kondo S, Guleng B, Tanaka Y, Asaoka Y, Jazag A, Imamura J, et al: p53-Independent negative regulation of p21/cyclin-dependent kinase-interacting protein 1 by the sonic hedgehog-glioma-associated oncogene 1 pathway in gastric carcinoma cells. Cancer Res. 65:10822–10829. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA and Lawler S: Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 68:9125–9130. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

March 2016
Volume 11 Issue 3

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xu, G., Liu, Y., Zhang, Y., Yang, Q., & Diao, B. (2016). Study on the therapeutic effect of neural progenitor cells in mice of a glioma murine model. Oncology Letters, 11, 2067-2070. https://doi.org/10.3892/ol.2016.4158
MLA
Xu, G., Liu, Y., Zhang, Y., Yang, Q., Diao, B."Study on the therapeutic effect of neural progenitor cells in mice of a glioma murine model". Oncology Letters 11.3 (2016): 2067-2070.
Chicago
Xu, G., Liu, Y., Zhang, Y., Yang, Q., Diao, B."Study on the therapeutic effect of neural progenitor cells in mice of a glioma murine model". Oncology Letters 11, no. 3 (2016): 2067-2070. https://doi.org/10.3892/ol.2016.4158