Aspirin may inhibit angiogenesis and induce autophagy by inhibiting mTOR signaling pathway in murine hepatocarcinoma and sarcoma models

  • Authors:
    • Qianqian Zhao
    • Zhaopeng Wang
    • Zhaoxia Wang
    • Licun Wu
    • Weidong Zhang
  • View Affiliations

  • Published online on: August 16, 2016     https://doi.org/10.3892/ol.2016.5017
  • Pages: 2804-2810
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Aspirin is known to have inhibitory effects on growth development in various types of tumor. In previous studies, it was observed to inhibit angiogenesis by downregulating the expression of vascular endothelial growth factor‑A (VEGF‑A). In the present study, murine H22 hepatocarcinoma and S180 sarcoma models were used to ascertain whether aspirin could inhibit angiogenesis and promote autophagy in tumors. Tumor‑bearing mice were randomly divided into four groups with 10 mice per group: i) no treatment; ii) low‑dose aspirin (100 mg/kg); iii) high‑dose aspirin (400 mg/kg); iv) everolimus group (4 mg/kg). The effects of high‑dose aspirin were validated through preliminary experiments. The drug treatment was administered every day for 14 days. The tumor size was measured every other day and then the tumor growth curve was plotted, and the tumor inhibitory rates were calculated. The expression levels of phosphorylated mammalian target of rapamycin (p‑mTOR), hypoxia‑inducible factor‑1α (HIF‑1α), VEGF‑A, UNC‑51‑like kinase‑1 (ULK1) and microtubule‑associated protein 1 light chain 3A (LC3A) were detected by immunohistochemistry and western blot analysis, respectively. We observed that tumor growth delay was achieved in both H22 hepatocarcinoma and S180 sarcoma models following treatment with aspirin. The tumor growth inhibition rates induced by low and high‑dose aspirin and everolimus were 19.6, 33.6 and 53.7% (P<0.05) in H22 hepato­carcinoma, and 25.7, 40.6 and 48.7% (P<0.05) in S180 sarcoma. The immunohistochemistry and western blot analysis data from the models revealed that the expression of p‑mTOR, HIF‑1α and VEGF‑A was decreased, while the expression of ULK1 and LC3A was increased following treatment with aspirin and everolimus. The changes were more apparent in the high‑dose aspirin and everolimus groups (P<0.01). The inhibitory action of aspirin and everolimus on tumor angiogenesis may be through inhibiting the expression of p‑mTOR, HIF‑1α and VEGF‑A. Alternatively, aspirin may induce autophagy by inhibiting the mTOR signaling target and then increasing ULK1 and LC3A.

References

1 

Gee JR, Jarrard DF, Bruskewitz RC, Moon TD, Hedican SP, Leverson GE, Nakada SY and Messing EM: Reduced bladder cancer recurrence rate with cardioprotective aspirin after intravesical bacille Calmette-Guérin. BJU Int. 103:736–739. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Alfonso LF, Srivenugopal KS, Arumugam TV, Abbruscato TJ, Weidanz JA and Bhat GJ: Aspirin inhibits camptothecin-induced p21CIP1 levels and potentiates apoptosis in human breast cancer cells. Int J Oncol. 34:597–608. 2009.PubMed/NCBI

3 

Iwama T: NSAIDs and colorectal cancer prevention. J Gastroenterol. 44(Suppl 19): S72–S76. 2009. View Article : Google Scholar

4 

Din FV, Theodoratou E, Farrington SM, Tenesa A, Barnetson RA, Cetnarskyj R, Stark L, Porteous ME, Campbell H and Dunlop MG: Effect of aspirin and NSAIDs on risk and survival from colorectal cancer. Gut. 59:1670–1679. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Rothwell PM, Wilson M, Elwin CE, Norrving B, Algra A, Warlow CP and Meade TW: Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet. 376:1741–1750. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Din FV, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, Alessi DR and Dunlop MG: Aspirin inhibits mTOR signaling, activates AMP-activatedprotein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology. 142:1504–1515.e3. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Zoncu R, Efeyan A and Sabatini DM: mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 12:21–35. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Alayev A and Holz MK: mTOR signaling for biological control and cancer. J Cell Physiol. 228:1658–1664. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Guertin DA and Sabatini DM: Defining the role of mTOR in cancer. Cancer Cell. 12:9–22. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Foster KG, Acosta-Jaquez HA, Romeo Y, Ekim B, Soliman GA, Carriere A, Roux PP, Ballif BA and Fingar DC: Regulation of mTOR complex l (mTORCI) by raptor Ser863 and multisite phosphorylation. J Biol Chem. 285:80–94. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Carbajo-Pescador S, Ordoñez R, Benet M, Jover R, GarcíaPalomo A, Mauriz JL and González-Gallego J: Inhibition of VEGF expression through blockade of Hif1α and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br J Cancer. 109:83–91. 2013. View Article : Google Scholar : PubMed/NCBI

12 

De Francesco EM, Lappano R, Santolla MF, Marsico S, Caruso A and Maggiolini M: HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Res. 15:R642013. View Article : Google Scholar : PubMed/NCBI

13 

Xie SR, Wang Y, Liu CW, Luo K and Cai YQ: Liquiritigenin inhibits serum-induced HIF-1α and VEGF expression via the AKT/mTOR-p70S6K signalling pathway in HeLa cells. Phytother Res. 26:1133–1141. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Ruan GX and Kazlauskas A: Axl is essential for VEGF-A-dependent activation of PI3K/Akt. EMBO J. 31:1692–1703. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Wouters BG and Koritzinsky M: Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 8:851–864. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Sengupta S, Peterson TR and Sabatini DM: Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell. 40:310–322. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Jain K, Paranandi KS, Sridharan S and Basu A: Autophagy in breast cancer and its implications for therapy. Am J Cancer Res. 3:251–265. 2013.PubMed/NCBI

18 

Morselli E, Galluzzi L, Kepp O, Vicencio JM, Criollo A, Maiuri MC and Kroemer G: Anti- and pro-tumor functions of autophagy. Biochim Biophys Acta. 1793:1524–1532. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Chan EY, Longatti A, McKnight NC and Tooze SA: Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol. 29:157–171. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T and Mizushima N: Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy. 5:973–979. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yonezawa K and Ohsumi Y: Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol. 30:1049–1058. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Behrends C, Sowa ME, Gygi SP and Harper JW: Network organization of the human autophagy system. Nature. 466:68–76. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Wirawan E, Berghe T Vanden, Lippens S, Agostinis P and Vandenabeele P: Autophagy: for better or for worse. Cell Res. 22:43–61. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Moretti L, Yang ES, Kim KW and Lu B: Autophagy signaling in cancer and its potential as novel target to improve anticancer therapy. Drug Resist Updat. 10:135–143. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D and Jain RK: Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 91:1071–1121. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Zhang X, Wang Z, Wang Z, Zhang Y, Jia Q, Wu L and Zhang W: Impact of acetylsalicylic acid on tumor angiogenesis and lymphangiogenesis through inhibition of VEGF signaling in a murine sarcoma model. Oncol Rep. 29:1907–1913. 2013.PubMed/NCBI

27 

Dazert E and Hall MN: mTOR signaling in disease. Curr Opin Cell Biol. 23:744–755. 2011. View Article : Google Scholar : PubMed/NCBI

28 

López-Knowles E, O'Toole SA, McNeil CM, Millar EK, Qiu MR, Crea P, Daly RJ, Musgrove EA and Sutherland RL: PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer. 126:1121–1131. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Hydbring P and Larsson LG: Cdk2: a key regulator of the senescence control function of Myc. Aging (Albany NY). 2:244–250. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Cavazzoni A, Bonelli MA, Fumarola C, La Monica S, Airoud K, Bertoni R, Alfieri RR, Galetti M, Tramonti S, Galvani E, et al: Overcoming acquired resistance to letrozole by targeting the PI3K/AKT/mTOR pathway in breast cancer cell clones. Cancer Lett. 323:77–87. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Wang FZ, Peng-Jiao, Yang NN, Chuang-Yuan, Zhao YL, Liu QQ, Fei HR and Zhang JG: PF-04691502 triggers cell cycle arrest, apoptosis and inhibits the angiogenesis in hepatocellular carcinoma cells. Toxicol Lett. 220:150–156. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Mizushima N, Yoshimori T and Levine B: Methods in mammalian autophagy research. Cell. 140:313–326. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Chaachouay H, Ohneseit P, Toulany M, Kehlbach R, Multhoff G and Rodemann HP: Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother Oncol. 99:287–292. 2011. View Article : Google Scholar : PubMed/NCBI

34 

O'Donovan TR, O'Sullivan GC and McKenna SL: Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy. 7:509–524. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Anbalagan S, Pires IM, Blick C, Hill MA, Ferguson DJ, Chan DA and Hammond EM: Radiosensitization of renal cell carcinoma in vitro through the induction of autophagy. Radiother Oncol. 103:388–393. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Hao J, Pei Y, Ji G, Li W, Feng S and Qiu S: Autophagy is induced by 3β-Osuccinyl-lupeol (LD9-4) in A549 cells via up-regulation of Beclin 1 and down-regulation mTOR pathway. Eur J Pharmacol. 670:29–38. 2011. View Article : Google Scholar : PubMed/NCBI

37 

He Z, Mangala LS, Theriot CA, Rohde LH, Wu H and Zhang Y: Cell killing and radiosensitizing effects of atorvastatin in PC3 prostate cancer cells. J Radiat Res. 53:225–233. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2016
Volume 12 Issue 4

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhao, Q., Wang, Z., Wang, Z., Wu, L., & Zhang, W. (2016). Aspirin may inhibit angiogenesis and induce autophagy by inhibiting mTOR signaling pathway in murine hepatocarcinoma and sarcoma models. Oncology Letters, 12, 2804-2810. https://doi.org/10.3892/ol.2016.5017
MLA
Zhao, Q., Wang, Z., Wang, Z., Wu, L., Zhang, W."Aspirin may inhibit angiogenesis and induce autophagy by inhibiting mTOR signaling pathway in murine hepatocarcinoma and sarcoma models". Oncology Letters 12.4 (2016): 2804-2810.
Chicago
Zhao, Q., Wang, Z., Wang, Z., Wu, L., Zhang, W."Aspirin may inhibit angiogenesis and induce autophagy by inhibiting mTOR signaling pathway in murine hepatocarcinoma and sarcoma models". Oncology Letters 12, no. 4 (2016): 2804-2810. https://doi.org/10.3892/ol.2016.5017