Open Access

Autophagy flux inhibition augments gastric cancer resistance to the anti-human epidermal growth factor receptor 2 antibody trastuzumab

  • Authors:
    • Hua Ye
    • Xuyu Chai
    • Xiaoyu Wang
    • Qi Zheng
    • Dingcheng Zheng
    • Feng Wu
    • Cheng Zheng
    • Ping Chen
  • View Affiliations

  • Published online on: January 29, 2018     https://doi.org/10.3892/ol.2018.7891
  • Pages: 4143-4150
  • Copyright: © Ye et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

The autophagy involved in the occurrence, development and prognosis of human epidermal growth factor receptor 2 (HER2) gene-amplified cancer also controls the resistance of this type of cancer to the monoclonal antibody, trastuzumab (Tzb). In the present study, Tzb resistance was established in HER2‑positive NCI‑N87 cell lines (Tzb‑refractory cells). The cell viability, clonogenic assay, ratios of light chain 3 II/I, sequestosome 1 expression, and the phosphorylation of protein kinase B (Akt) and mechanistic target of rapamycin (mTOR) were investigated in the parental and Tzb‑refractory cells. The viability of parental NCI‑N87 and Tzb‑refractory cells with an autophagy inhibitor or inducer was also examined. The results of the present study indicated that autophagic flux may have an important function in the resistance of HER2-positive human gastric cancer NCI‑N87 cells to Tzb. Tzb resistance in NCI‑N87 cells prevents cell apoptosis via autophagic flux inhibition. Tzb may activate the Akt/mTOR pathway to inhibit autophagic flux in gastric cancer cell lines. Everolimus, an mTOR inhibitor, may inhibit cell viability, indicating that the mTOR pathway may serve a function in HER2‑positive gastric cancer and that the resistance of HER2‑positive gastric cancer to Tzb may, at least partially, be due to activation of the mTOR pathway.

References

1 

Wang Q, Zhang X, Shen E, Gao J, Cao F, Wang X, Li Y, Tian T, Wang J, Chen Z, et al: The anti-HER3 antibody in combination with trastuzumab exerts synergistic antitumor activity in HER2-positive gastric cancer. Cancer Lett. 380:20–30. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Gravalos C and Jimeno A: HER2 in gastric cancer: A new prognostic factor and a novel therapeutic target. Ann Oncol. 19:1523–1529. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Arienti C, Zanoni M, Pignatta S, Del Rio A, Carloni S, Tebaldi M, Tedaldi G and Tesei A: Preclinical evidence of multiple mechanisms underlying trastuzumab resistance in gastric cancer. Oncotarget. 7:18424–18439. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A and McGuire WL: Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 235:177–182. 1987. View Article : Google Scholar : PubMed/NCBI

5 

Abrahao-Machado LF and Scapulatempo-Neto C: HER2 testing in gastric cancer: An update. World J Gastroenterol. 22:4619–4625. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, et al: Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet. 376:687–697. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Zhi X and Zhong Q: Autophagy in cancer. F1000prime Rep. 7:182015. View Article : Google Scholar : PubMed/NCBI

8 

Zhao Z, Han F, Yang S, Wu J and Zhan W: Oxamate-mediated inhibition of lactate dehydrogenase induces protective autophagy in gastric cancer cells: Involvement of the Akt-mTOR signaling pathway. Cancer Lett. 358:17–26. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Pan WR, Chen YL, Hsu HC and Chen WJ: Antimicrobial peptide GW-H1-induced apoptosis of human gastric cancer AGS cell line is enhanced by suppression of autophagy. Mol Cell Biochem. 400:77–86. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Wu M, Lao Y, Xu N, Wang X, Tan H, Fu W, Lin Z and Xu H: Guttiferone K induces autophagy and sensitizes cancer cells to nutrient stress-induced cell death. Phytomedicine. 22:902–910. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Qian HR and Yang Y: Functional role of autophagy in gastric cancer. Oncotarget. 7:17641–17651. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Urruticoechea A, Martin-Castillo B and Menendez JA: Autophagy-related gene 12 (ATG12) is a novel determinant of primary resistance to HER2-targeted therapies: Utility of transcriptome analysis of the autophagy interactome to guide breast cancer treatment. Oncotarget. 3:1600–1614. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Rodriguez CE, Reidel SI, Bal de Kier Joffé ED, Jasnis MA and Fiszman GL: Autophagy protects from trastuzumab-induced cytotoxicity in HER2 overexpressing breast tumor spheroids. PLoS One. 10:e01379202015. View Article : Google Scholar : PubMed/NCBI

14 

Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Cuyàs E, López-Bonet E, Martin-Castillo B, Joven J and Menendez JA: The anti-malarial chloroquine overcomes primary resistance and restores sensitivity to trastuzumab in HER2-positive breast cancer. Sci Rep. 3:24692013. View Article : Google Scholar : PubMed/NCBI

15 

Vazquez-Martin A, Oliveras-Ferraros C and Menendez JA: Autophagy facilitates the development of breast cancer resistance to the anti-HER2 monoclonal antibody trastuzumab. PLoS One. 4:e62512009. View Article : Google Scholar : PubMed/NCBI

16 

Bartlett BJ, Isakson P, Lewerenz J, Sanchez H, Kotzebue RW, Cumming RC, Harris GL, Nezis IP, Schubert DR, Simonsen A and Finley KD: p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy. 7:572–583. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Pamarthy S, Jaiswal MK, Kulshreshtha A, Katara GK, Gilman-Sachs A and Beaman KD: The vacuolar ATPase a2-subunit regulates Notch signaling in triple-negative breast cancer cells. Oncotarget. 6:34206–34220. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Manic G, Obrist F, Kroemer G, Vitale I and Galluzzi L: Chloroquine and hydroxychloroquine for cancer therapy. Mol Cell Oncol. 1:e299112014. View Article : Google Scholar : PubMed/NCBI

19 

Lui A, New J, Ogony J, Thomas S and Lewis-Wambi J: Everolimus downregulates estrogen receptor and induces autophagy in aromatase inhibitor-resistant breast cancer cells. BMC Cancer. 16:4872016. View Article : Google Scholar : PubMed/NCBI

20 

Lin CI, Whang EE, Donner DB, Du J, Lorch J, He F, Jiang X, Price BD, Moore FD Jr and Ruan DT: Autophagy induction with RAD001 enhances chemosensitivity and radiosensitivity through Met inhibition in papillary thyroid cancer. Mol Cancer Res. 8:1217–1226. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Said A, Bock S, Lajqi T, Muller G and Weindl G: Chloroquine promotes IL-17 production by CD4+ T cells via p38-dependent IL-23 release by monocyte-derived Langerhans-like cells. J Immunol. 193:6135–6143. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Spears LD, Tran AV, Qin CY, Hobbs SB, Burns CA, Royer NK, Zhang Z, Ralston L and Fisher JS: Chloroquine increases phosphorylation of AMPK and Akt in myotubes. Heliyon. 2:e000832016. View Article : Google Scholar : PubMed/NCBI

23 

O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, et al: mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66:1500–1508. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Yang XL, Lin FJ, Guo YJ, Shao ZM and Ou ZL: Gemcitabine resistance in breast cancer cells regulated by PI3K/AKT-mediated cellular proliferation exerts negative feedback via the MEK/MAPK and mTOR pathways. OncoTargets Ther. 7:1033–1042. 2014.

25 

Zhang L, Wang H, Xu J, Zhu J and Ding K: Inhibition of cathepsin S induces autophagy and apoptosis in human glioblastoma cell lines through ROS-mediated PI3K/AKT/mTOR/p70S6K and JNK signaling pathways. Toxicol Lett. 228:248–259. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Saran U, Foti M and Dufour JF: Cellular and molecular effects of the mTOR inhibitor everolimus. Clin Sci (Lond). 129:895–914. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Fuereder T, Wanek T, Pflegerl P, Jaeger-Lansky A, Hoeflmayer D, Strommer S, Kuntner C, Wrba F, Werzowa J, Hejna M, et al: Gastric cancer growth control by BEZ235 in vivo does not correlate with PI3K/mTOR target inhibition but with [18F]FLT uptake. Clin Cancer Res. 17:5322–5332. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Zhu Y, Tian T, Zou J, Wang Q, Li Z, Li Y, Liu X, Dong B, Li N, Gao J and Shen L: Dual PI3K/mTOR inhibitor BEZ235 exerts extensive antitumor activity in HER2-positive gastric cancer. BMC Cancer. 15:8942015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2018
Volume 15 Issue 4

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Ye, H., Chai, X., Wang, X., Zheng, Q., Zheng, D., Wu, F. ... Chen, P. (2018). Autophagy flux inhibition augments gastric cancer resistance to the anti-human epidermal growth factor receptor 2 antibody trastuzumab. Oncology Letters, 15, 4143-4150. https://doi.org/10.3892/ol.2018.7891
MLA
Ye, H., Chai, X., Wang, X., Zheng, Q., Zheng, D., Wu, F., Zheng, C., Chen, P."Autophagy flux inhibition augments gastric cancer resistance to the anti-human epidermal growth factor receptor 2 antibody trastuzumab". Oncology Letters 15.4 (2018): 4143-4150.
Chicago
Ye, H., Chai, X., Wang, X., Zheng, Q., Zheng, D., Wu, F., Zheng, C., Chen, P."Autophagy flux inhibition augments gastric cancer resistance to the anti-human epidermal growth factor receptor 2 antibody trastuzumab". Oncology Letters 15, no. 4 (2018): 4143-4150. https://doi.org/10.3892/ol.2018.7891