Function of neuronal nitric oxide synthase enzyme in temozolomide-induced damage of astrocytic tumor cells

  • Authors:
    • Fernando Francisco Borges Resende
    • Simoneide Souza Titze‑de‑Almeida
    • Ricardo Titze‑de‑Almeida
  • View Affiliations

  • Published online on: February 1, 2018     https://doi.org/10.3892/ol.2018.7917
  • Pages: 4891-4899
Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

Astrocytic tumors, including astrocytomas and glioblastomas, are the most common type of primary brain tumors. Treatment for glioblastomas includes radiotherapy, chemotherapy with temozolomide (TMZ) and surgical ablation. Despite certain therapeutic advances, the survival time of patients is no longer than 12‑14 months. Cancer cells overexpress the neuronal isoform of nitric oxide synthase (nNOS). In the present study, it was examined whether the nNOS enzyme serves a role in the damage of astrocytoma (U251MG and U138MG) and glioblastoma (U87MG) cells caused by TMZ. First, TMZ (250 µM) triggered an increase in oxidative stress at 2, 48 and 72 h in the U87MG, U251MG and U138MG cell lines, as revealed by 2',7'‑dichlorofluorescin‑diacetate assay. The drug also reduced cell viability, as measured by MTT assay. U87MG cells presented a more linear decline in cell viability at time‑points 2, 48 and 72 h, compared with the U251MG and U138MG cell lines. The peak of oxidative stress occurred at 48 h. To examine the role of NOS enzymes in the cell damage caused by TMZ, N(ω)‑nitro‑L‑arginine methyl ester (L‑NAME) and 7‑nitroindazole (7‑NI) were used. L‑NAME increased the cell damage caused by TMZ while reducing the oxidative stress at 48 h. The preferential nNOS inhibitor 7‑NI also improved the TMZ effects. It caused a 12.8% decrease in the viability of TMZ‑injured cells. Indeed, 7‑NI was more effective than L‑NAME in restraining the increase in oxidative stress triggered by TMZ. Silencing nNOS with a synthetic small interfering (si)RNA (siRNAnNOShum_4400) increased by 20% the effects of 250 µM of TMZ on cell viability (P<0.05). Hoechst 33342 nuclear staining confirmed that nNOS knock‑down enhanced TMZ injury. In conclusion, our data reveal that nNOS enzymes serve a role in the damage produced by TMZ on astrocytoma and glioblastoma cells. RNA interference with nNOS merits further studies in animal models to disclose its potential use in brain tumor anticancer therapy.

References

1 

Lassman AB: Molecular biology of gliomas. Curr Neurol Neurosci Rep. 4:228–233. 2004. View Article : Google Scholar : PubMed/NCBI

2 

Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK and DePinho RA: Malignant glioma: Genetics and biology of a grave matter. Genes Dev. 15:1311–1333. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Henson JW: Treatment of glioblastoma multiforme: A new standard. Arch Neurol. 63:337–341. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 15 Suppl 2:ii1–ii56. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Stupp R, Hegi ME, Gilbert MR and Chakravarti A: Chemoradiotherapy in malignant glioma: Standard of care and future directions. J Clin Oncol. 25:4127–4136. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Pedretti M, Verpelli C, Mårlind J, Bertani G, Sala C, Neri D and Bello L: Combination of temozolomide with immunocytokine F16-IL2 for the treatment of glioblastoma. Br J Cancer. 103:827–836. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Sathornsumetee S and Rich JN: New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther. 6:1087–1104. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Cairns RA, Harris IS and Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Kardeh S, Ashkani-Esfahani S and Alizadeh AM: Paradoxical action of reactive oxygen species in creation and therapy of cancer. Eur J Pharmacol. 735:150–168. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Nogueira V and Hay N: Molecular pathways: Reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res. 19:4309–4314. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Conti A, Guli C, La Torre D, Tomasello C, Angileri FF and Aguennouz M: Role of inflammation and oxidative stress mediators in gliomas. Cancers (Basel). 2:693–712. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Kim SH, Kwon CH and Nakano I: Detoxification of oxidative stress in glioma stem cells: Mechanism, clinical relevance, and therapeutic development. J Neurosci Res. 92:1419–1424. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Moncada S and Bolaños JP: Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem. 97:1676–1689. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Luo CX and Zhu DY: Research progress on neurobiology of neuronal nitric oxide synthase. Neurosci Bull. 27:23–35. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Thomsen LL and Miles DW: Role of nitric oxide in tumour progression: Lessons from human tumours. Cancer Metastasis Rev. 17:107–118. 1998. View Article : Google Scholar : PubMed/NCBI

16 

Bakshi A, Nag TC, Wadhwa S, Mahapatra AK and Sarkar C: The expression of nitric oxide synthases in human brain tumours and peritumoral areas. J Neurol Sci. 155:196–203. 1998. View Article : Google Scholar : PubMed/NCBI

17 

Fukumura D and Jain RK: Role of nitric oxide in angiogenesis and microcirculation in tumors. Cancer Metastasis Rev. 17:77–89. 1998. View Article : Google Scholar : PubMed/NCBI

18 

Tanriover N, Ulu MO, Isler C, Durak H, Oz B, Uzan M and Akar Z: Neuronal nitric oxide synthase expression in glial tumors: Correlation with malignancy and tumor proliferation. Neurol Res. 30:940–944. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Swaroop GR, Kelly PA, Bell HS, Shinoda J, Yamaguchi S and Whittle IR: The effects of chronic nitric oxide synthase suppression on glioma pathophysiology. Br J Neurosurg. 14:543–548. 2000. View Article : Google Scholar : PubMed/NCBI

20 

Roche AK, Cook M, Wilcox GL and Kajander KC: A nitric oxide synthesis inhibitor (L-NAME) reduces licking behavior and Fos-labeling in the spinal cord of rats during formalin-induced inflammation. Pain. 66:331–341. 1996. View Article : Google Scholar : PubMed/NCBI

21 

Southan GJ and Szabó C: Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem Pharmacol. 51:383–394. 1996. View Article : Google Scholar : PubMed/NCBI

22 

Huesken D, Lange J, Mickanin C, Weiler J, Asselbergs F, Warner J, Meloon B, Engel S, Rosenberg A, Cohen D, et al: Design of a genome-wide siRNA library using an artificial neural network. Nat Biotechnol. 23:995–1001. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Titze-de-Almeida SS, Lustosa CF, Horst CH, Bel ED and Titze-de-Almeida R: Interferon Gamma potentiates the injury caused by MPP(+) on SH-SY5Y cells, which is attenuated by the nitric oxide synthases inhibition. Neurochem Res. 39:2452–2464. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Dotsch J, Harmjanz A, Christiansen H, Hänze J, Lampert F and Rascher W: Gene expression of neuronal nitric oxide synthase and adrenomedullin in human neuroblastoma using real-time PCR. Int J Cancer. 88:172–175. 2000. View Article : Google Scholar : PubMed/NCBI

25 

Kwon MJ, Oh E, Lee S, Roh MR, Kim SE, Lee Y, Choi YL, In YH, Park T, Koh SS and Shin YK: Identification of novel reference genes using multiplatform expression data and their validation for quantitative gene expression analysis. PLoS One. 4:e61622009. View Article : Google Scholar : PubMed/NCBI

26 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Sandhu LC, Warters RL and Dethlefsen LA: Fluorescence studies of Hoechst 33342 with supercoiled and relaxed plasmid pBR322 DNA. Cytometry. 6:191–194. 1985. View Article : Google Scholar : PubMed/NCBI

28 

Jia W, Jackson-Cook C and Graf MR: Tumor-infiltrating, myeloid-derived suppressor cells inhibit T cell activity by nitric oxide production in an intracranial rat glioma + vaccination model. J Neuroimmunol. 223:20–30. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Muntané J and La Mata MD: Nitric oxide and cancer. World J Hepatol. 2:337–344. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Sikora AG, Gelbard A, Davies MA, Sano D, Ekmekcioglu S, Kwon J, Hailemichael Y, Jayaraman P, Myers JN, Grimm EA and Overwijk WW: Targeted inhibition of inducible nitric oxide synthase inhibits growth of human melanoma in vivo and synergizes with chemotherapy. Clin Cancer Res. 16:1834–1844. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Sang DP, Li RJ and Lan Q: Quercetin sensitizes human glioblastoma cells to temozolomide in vitro via inhibition of Hsp27. Acta Pharmacol Sin. 35:832–838. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Jakubowicz-Gil J, Langner E, Badziul D, Wertel I and Rzeski W: Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumour Biol. 34:2367–2378. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Oliva CR, Moellering DR, Gillespie GY and Griguer CE: Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production. PLoS One. 6:e246652011. View Article : Google Scholar : PubMed/NCBI

34 

Zhang WB, Wang Z, Shu F, Jin YH, Liu HY, Wang QJ and Yang Y: Activation of AMP-activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition. J Biol Chem. 285:40461–40471. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Allen M, Bjerke M, Edlund H, Nelander S and Westermark B: Origin of the U87MG glioma cell line: Good news and bad news. Sci Transl Med. 8:354re32016. View Article : Google Scholar : PubMed/NCBI

36 

Bady P, Diserens AC, Castella V, Kalt S, Heinimann K, Hamou MF, Delorenzi M and Hegi ME: DNA fingerprinting of glioma cell lines and considerations on similarity measurements. Neuro Oncol. 14:701–711. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, et al: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 483:603–607. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Reni M, Mazza E, Zanon S, Gatta G and Vecht CJ: Central nervous system gliomas. Crit Rev Oncol Hematol. 113:213–234. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Goldbrunner RH, Wagner S, Roosen K and Tonn JC: Models for assessment of angiogenesis in gliomas. J Neurooncol. 50:53–62. 2000. View Article : Google Scholar : PubMed/NCBI

41 

Stylli SS, Luwor RB, Ware TM, Tan F and Kaye AH: Mouse models of glioma. J Clin Neurosci. 22:619–626. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Cheng SY, Huang HJ, Nagane M, Ji XD, Wang D, Shih CC, Arap W, Huang CM and Cavenee WK: Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA. 93:pp. 8502–8507. 1996; View Article : Google Scholar : PubMed/NCBI

43 

Doblas S, He T, Saunders D, Pearson J, Hoyle J, Smith N, Lerner M and Towner RA: Glioma morphology and tumor-induced vascular alterations revealed in seven rodent glioma models by in vivo magnetic resonance imaging and angiography. J Magn Reson Imaging. 32:267–275. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Kirschner S, Murle B, Felix M, Arns A, Groden C, Wenz F, Hug A, Glatting G, Kramer M, Giordano FA and Brockmann MA: Imaging of orthotopic glioblastoma xenografts in mice using a clinical CT scanner: Comparison with Micro-CT and histology. PLoS One. 11:e01659942016. View Article : Google Scholar : PubMed/NCBI

45 

Liu X, Dong C, Shi J, Ma T, Jin Z, Jia B, Liu Z, Shen L and Wang F: Radiolabeled novel mAb 4G1 for immunoSPECT imaging of EGFRvIII expression in preclinical glioblastoma xenografts. Oncotarget. 8:6364–6375. 2017.PubMed/NCBI

46 

Rogers S, Hii H, Huang J, Ancliffe M, Gottardo NG, Dallas P, Lee S and Endersby R: A novel technique of serial biopsy in mouse brain tumour models. PLoS One. 12:e01751692017. View Article : Google Scholar : PubMed/NCBI

47 

Arcella A, Oliva MA, Staffieri S, Aalberti S, Grillea G, Madonna M, Bartolo M, Pavone L, Giangaspero F, Cantore G and Frati A: In vitro and in vivo effect of human lactoferrin on glioblastoma growth. J Neurosurg. 123:1026–1035. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Nitta Y, Shimizu S, Shishido-Hara Y, Suzuki K, Shiokawa Y and Nagane M: Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo. Cancer Med. 5:486–499. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH and Wimmer E: Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci USA. 97:pp. 6803–6808. 2000; View Article : Google Scholar : PubMed/NCBI

50 

Kang KB, Wang TT, Woon CT, Cheah ES, Moore XL, Zhu C and Wong MC: Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: Inhibition of tumor angiogenesis with extensive tumor necrosis. Int J Radiat Oncol Biol Phys. 67:888–896. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Jin J, Choi SH, Lee JE, Joo JD, Han JH, Park SY and Kim CY: Antitumor activity of 7-O-succinyl macrolactin A tromethamine salt in the mouse glioma model. Oncol Lett. 13:3767–3773. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Gravina GL, Mancini A, Marampon F, Colapietro A, Delle Monache S, Sferra R, Vitale F, Richardson PJ, Patient L, Burbidge S and Festuccia C: The brain-penetrating CXCR4 antagonist, PRX177561, increases the antitumor effects of bevacizumab and sunitinib in preclinical models of human glioblastoma. J Hematol Oncol. 10:52017. View Article : Google Scholar : PubMed/NCBI

53 

Zhong X, Zhao H, Liang S, Zhou D, Zhang W and Yuan L: Gene delivery of apoptin-derived peptide using an adeno-associated virus vector inhibits glioma and prolongs animal survival. Biochem Biophys Res Commun. 482:506–513. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Blaise GA, Gauvin D, Gangal M and Authier S: Nitric oxide, cell signaling and cell death. Toxicology. 208:177–192. 2005. View Article : Google Scholar : PubMed/NCBI

55 

Brunelli L, Yermilov V and Beckman JS: Modulation of catalase peroxidatic and catalatic activity by nitric oxide. Free Radic Biol Med. 30:709–714. 2001. View Article : Google Scholar : PubMed/NCBI

56 

Cobbs CS, Whisenhunt TR, Wesemann DR, Harkins LE, Van Meir EG and Samanta M: Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res. 63:8670–8673. 2003.PubMed/NCBI

57 

Xu W, Liu LZ, Loizidou M, Ahmed M and Charles IG: The role of nitric oxide in cancer. Cell Res. 12:311–320. 2002. View Article : Google Scholar : PubMed/NCBI

58 

Zhang P, Wang YZ, Kagan E and Bonner JC: Peroxynitrite targets the epidermal growth factor receptor, Raf-1, and MEK independently to activate MAPK. J Biol Chem. 275:22479–22486. 2000. View Article : Google Scholar : PubMed/NCBI

59 

Oyoshi T, Nomoto M, Hirano H and Kuratsu J: Pathodynamics of nitric oxide production within implanted glioma studied with an in vivo microdialysis technique and immunohistochemistry. J Pharmacol Sci. 91:15–22. 2003. View Article : Google Scholar : PubMed/NCBI

60 

Broholm H, Rubin I, Kruse A, Braendstrup O, Schmidt K, Skriver EB and Lauritzen M: Nitric oxide synthase expression and enzymatic activity in human brain tumors. Clin Neuropathol. 22:273–281. 2003.PubMed/NCBI

61 

Agnihotri S, Burrell KE, Wolf A, Jalali S, Hawkins C, Rutka JT and Zadeh G: Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp (Warsz). 61:25–41. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Lenting K, Verhaak R, Ter Laan M, Wesseling P and Leenders W: Glioma: Experimental models and reality. Acta Neuropathol. 133:263–282. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Resende FF, Bai X, Del Bel EA, Kirchhoff F, Scheller A and Titze-de-Almeida R: Evaluation of TgH(CX3CR1-EGFP) mice implanted with mCherry-GL261 cells as an in vivo model for morphometrical analysis of glioma-microglia interaction. BMC Cancer. 16:722016. View Article : Google Scholar : PubMed/NCBI

64 

Chen J, McKay RM and Parada LF: Malignant glioma: Lessons from genomics, mouse models, and stem cells. Cell. 149:36–47. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Cloughesy TF, Cavenee WK and Mischel PS: Glioblastoma: From molecular pathology to targeted treatment. Annu Rev Pathol. 9:1–25. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Kegelman TP, Hu B, Emdad L, Das SK, Sarkar D and Fisher PB: In vivo modeling of malignant glioma: The road to effective therapy. Adv Cancer Res. 121:261–330. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Wang Y and Jiang T: Understanding high grade glioma: Molecular mechanism, therapy and comprehensive management. Cancer Lett. 331:139–146. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Kato T, Natsume A, Toda H, Iwamizu H, Sugita T, Hachisu R, Watanabe R, Yuki K, Motomura K, Bankiewicz K and Wakabayashi T: Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Ther. 17:1363–1371. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Shervington A and Patel R: Silencing DNA methyltransferase (DNMT) enhances glioma chemosensitivity. Oligonucleotides. 18:365–374. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Wen X, Huang A, Liu Z, Liu Y, Hu J, Liu J and Shuai X: Downregulation of ROCK2 through nanocomplex sensitizes the cytotoxic effect of temozolomide in U251 glioma cells. PLoS One. 9:e920502014. View Article : Google Scholar : PubMed/NCBI

71 

Sales TT, Resende FF, Chaves NL, Titze-De-Almeida SS, Báo SN, Brettas ML and Titze-De-Almeida R: Suppression of the Eag1 potassium channel sensitizes glioblastoma cells to injury caused by temozolomide. Oncol Lett. 12:2581–2589. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Cruickshanks N, Shervington L, Patel R, Munje C, Thakkar D and Shervington A: Can hsp90alpha-targeted siRNA combined with TMZ be a future therapy for glioma? Cancer Invest. 28:608–614. 2010. View Article : Google Scholar : PubMed/NCBI

73 

Jakubowicz-Gil J, Langner E, Badziul D, Wertel I and Rzeski W: Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment. Toxicol Appl Pharmacol. 273:580–589. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Paul-Samojedny M, Pudelko A, Kowalczyk M, Fila-Daniłow A, Suchanek-Raif R, Borkowska P and Kowalski J: Combination therapy with AKT3 and PI3KCA siRNA enhances the antitumor effect of temozolomide and carmustine in T98G glioblastoma multiforme cells. BioDrugs. 30:129–144. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Qian C, Li P, Yan W, Shi L, Zhang J, Wang Y, Liu H and You Y: Downregulation of osteopontin enhances the sensitivity of glioma U251 cells to temozolomide and cisplatin by targeting the NF-κB/Bcl-2 pathway. Mol Med Rep. 11:1951–1955. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Tivnan A, Zakaria Z, O'Leary C, Kögel D, Pokorny JL, Sarkaria JN and Prehn JH: Inhibition of multidrug resistance protein 1 (MRP1) improves chemotherapy drug response in primary and recurrent glioblastoma multiforme. Front Neurosci. 9:2182015. View Article : Google Scholar : PubMed/NCBI

77 

Wang Q, Du J, Xu B, Xu L, Wang X, Liu J and Wang J: Silence of bFGF enhances chemosensitivity of glioma cells to temozolomide through the MAPK signal pathway. Acta Biochim Biophys Sin (Shanghai). 48:501–508. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Titze-de-Almeida R, David C and Titze-de-Almeida SS: The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm Res. 34:1339–1363. 2017. View Article : Google Scholar : PubMed/NCBI

79 

de Boer AG and Gaillard PJ: Drug targeting to the brain. Annu Rev Pharmacol Toxicol. 47:323–355. 2007. View Article : Google Scholar : PubMed/NCBI

80 

Lonser RR, Sarntinoranont M, Morrison PF and Oldfield EH: Convection-enhanced delivery to the central nervous system. J Neurosurg. 122:697–706. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Cohen ZR, Ramishetti S, Peshes-Yaloz N, Goldsmith M, Wohl A, Zibly Z and Peer D: Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles. ACS Nano. 9:1581–1591. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Danhier F, Messaoudi K, Lemaire L, Benoit JP and Lagarce F: Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: In vivo evaluation. Int J Pharm. 481:154–161. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Tsujiuchi T, Natsume A, Motomura K, Kondo G, Ranjit M, Hachisu R, Sugimura I, Tomita S, Takehara I, Woolley M, et al: Preclinical evaluation of an O(6)-methylguanine-DNA methyltransferase-siRNA/liposome complex administered by convection-enhanced delivery to rat and porcine brains. Am J Transl Res. 6:169–178. 2014.PubMed/NCBI

84 

Golan T, Khvalevsky EZ, Hubert A, Gabai RM, Hen N, Segal A, Domb A, Harari G, David EB, Raskin S, et al: RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget. 6:24560–24570. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2018
Volume 15 Issue 4

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Resende, F.F., Titze‑de‑Almeida, S.S., & Titze‑de‑Almeida, R. (2018). Function of neuronal nitric oxide synthase enzyme in temozolomide-induced damage of astrocytic tumor cells. Oncology Letters, 15, 4891-4899. https://doi.org/10.3892/ol.2018.7917
MLA
Resende, F. F., Titze‑de‑Almeida, S. S., Titze‑de‑Almeida, R."Function of neuronal nitric oxide synthase enzyme in temozolomide-induced damage of astrocytic tumor cells". Oncology Letters 15.4 (2018): 4891-4899.
Chicago
Resende, F. F., Titze‑de‑Almeida, S. S., Titze‑de‑Almeida, R."Function of neuronal nitric oxide synthase enzyme in temozolomide-induced damage of astrocytic tumor cells". Oncology Letters 15, no. 4 (2018): 4891-4899. https://doi.org/10.3892/ol.2018.7917