Open Access

Expression of Hippo pathway genes and their clinical significance in colon adenocarcinoma

  • Authors:
    • Sang Yeon Cho
    • Jang Wook Gwak
    • Yoo Chul Shin
    • Daeju Moon
    • Jihyuok Ahn
    • Hyon Woo Sol
    • Sungha Kim
    • Gwanghun Kim
    • Hyun Mu Shin
    • Kyung Ha Lee
    • Ji Yeon Kim
    • Jin Soo Kim
  • View Affiliations

  • Published online on: January 31, 2018     https://doi.org/10.3892/ol.2018.7911
  • Pages: 4926-4936
  • Copyright: © Cho et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

Yes-associated protein 1 (YAP1) is a transcriptional regulator of the Hippo pathway, which regulates the development and progression of a number of types of cancer, including that of the colon. In the present study, the expression levels of Hippo pathway genes and their clinical significance were investigated in 458 patients with colon adenocarcinoma (COAD), the most frequently diagnosed neoplastic disease globally, using data obtained from The Cancer Genome Atlas database. Notably, mRNA expression of YAP1 was higher in COAD than in other types of gastrointestinal tract cancer. Expression of YAP1 mRNA was higher in COAD than in normal colon samples and was significantly higher in Tumor‑Node‑Metastasis (TNM) stages III‑IV than in stages I‑II. YAP1 protein levels, a protein primarily localized in the nucleus, was greater in TNM stages III‑IV than in stages I‑II. The level of pYAP1, which is inactive and localized in the cytoplasm, was significantly higher in TNM stages III‑IV than in stages I‑II. However, the YAP1/pYAP1 ratio, which is representative of activity, was higher in TNM stages III‑IV than in stages I‑II. High mRNA expression of YAP1, TAZ and TEAD4 was associated with a poor prognosis in patients with COAD. Bioinformatics analysis revealed that YAP1 was associated with DNA duplication, cell proliferation and development. Wnt signaling and transforming growth factor‑β signaling were significantly higher in the high‑YAP1 group, according to data from Gene Set Enrichment Analysis. Taken together, the results indicate that the subcellular distribution of YAP1 and high mRNA expression of YAP1, TAZ and TEAD4 may be associated with poorer overall survival rates in patients with COAD.

References

1 

Ikushima H and Miyazono K: TGFbeta signalling: A complex web in cancer progression. Nat Rev Cancer. 10:415–424. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Mo JS, Park HW and Guan KL: The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 15:642–656. 2014.PubMed/NCBI

3 

Johnson R and Halder G: The two faces of Hippo: Targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 13:63–79. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Piccolo S, Dupont S and Cordenonsi M: The biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev. 94:1287–1312. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Harvey KF, Zhang X and Thomas DM: The Hippo pathway and human cancer. Nat Rev Cancer. 13:246–257. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Santucci M, Vignudelli T, Ferrari S, Mor M, Scalvini L, Bolognesi ML, Uliassi E and Costi MP: The Hippo pathway and YAP/TAZ-TEAD protein-protein interaction as targets for regenerative medicine and cancer treatment. J Med Chem. 58:4857–4873. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Justice N, Roegiers F, Jan LY and Jan YN: Lethal giant larvae acts together with numb in notch inhibition and cell fate specification in the Drosophila adult sensory organ precursor lineage. Curr Biol. 13:778–783. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Xu T, Wang W, Zhang S, Stewart RA and Yu W: Identifying tumor suppressors in genetic mosaics: The Drosophila lats gene encodes a putative protein kinase. Development. 121:1053–1063. 1995.PubMed/NCBI

9 

Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber D and Hariharan IK: salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell. 110:467–478. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Cui ZL, Han FF, Peng XH, Chen X, Luan CY, Han RC, Xu WG and Guo XJ: YES-associated protein 1 promotes adenocarcinoma growth and metastasis through activation of the receptor tyrosine kinase Axl. Int J Immunopathol Pharmacol. 25:989–1001. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Pei T, Li Y, Wang J, Wang H, Liang Y, Shi H, Sun B, Yin D, Sun J, Song R, et al: YAP is a critical oncogene in human cholangiocarcinoma. Oncotarget. 6:17206–17220. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, et al: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21:2747–2761. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A and Pan D: Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 130:1120–1133. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Steinhardt AA, Gayyed MF, Klein AP, Dong J, Maitra A, Pan D, Montgomery EA and Anders RA: Expression of Yes-associated protein in common solid tumors. Hum Pathol. 39:1582–1589. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Zhang X, George J, Deb S, Degoutin JL, Takano EA, Fox SB; AOCS Study group, ; Bowtell DD and Harvey KF: The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene. Oncogene. 30:2810–2822. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Hall CA, Wang R, Miao J, Oliva E, Shen X, Wheeler T, Hilsenbeck SG, Orsulic S and Goode S: Hippo pathway effector Yap is an ovarian cancer oncogene. Cancer Res. 70:8517–8525. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Nallet-Staub F, Marsaud V, Li L, Gilbert C, Dodier S, Betaille V, Sudol M, Herlyn M and Mauviel A: Pro-invasive activity of the Hippo pathway effectors YAP and TAZ in cutaneous melanoma. J Invest Dermatol. 134:123–132. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Bhat KP, Salazar KL, Balasubramaniyan V, Wani K, Heathcock L, Hollingsworth F, James JD, Gumin J, Diefes KL, Kim SH, et al: The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev. 25:2594–2609. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Cottini F, Hideshima T, Xu C, Sattler M, Dori M, Agnelli L, ten Hacken E, Bertilaccio MT, Antonini E, Neri A, et al: Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med. 20:599–606. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Wang Y, Xie C, Li Q, Xu K and Wang E: Clinical and prognostic significance of Yes-associated protein in colorectal cancer. Tumour Biol. 34:2169–2174. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Wang L, Shi S, Guo Z, Zhang X, Han S, Yang A, Wen W and Zhu A: Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS One. 8:e655392013. View Article : Google Scholar : PubMed/NCBI

22 

Liang K, Zhou G, Zhang Q, Li J and Zhang C: Expression of hippo pathway in colorectal cancer. Saudi J Gastroenterol. 20:188–194. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Yuen HF, McCrudden CM, Huang YH, Tham JM, Zhang X, Zeng Q, Zhang SD and Hong W: TAZ expression as a prognostic indicator in colorectal cancer. PLoS One. 8:e542112013. View Article : Google Scholar : PubMed/NCBI

24 

R Core Team, . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2016

25 

Golub TR, Slonim DK, Tamayo P, Huard C, Baasenbeek M, Mersirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, et al: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science. 286:531–537. 1999. View Article : Google Scholar : PubMed/NCBI

26 

Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki RA: The DAVID gene functional classification tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8:R1832007. View Article : Google Scholar : PubMed/NCBI

27 

Kanehisa M, Goto S, Sato Y, Furumichi M and Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40:D109–D114. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Kanehisa M and Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28:27–30. 2000. View Article : Google Scholar : PubMed/NCBI

29 

Budczies J, Klauschen F, Sinn BV, Győrffy B, Schmitt WD, Darb-Esfahani S and Denkert C: Cutoff Finder: A comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS One. 7:e518622012. View Article : Google Scholar : PubMed/NCBI

30 

Hari DM, Leung AM, Lee JH, Sim MS, Vuong B, Chiu CG and Bilchik AJ: AJCC cancer staging manual 7th edition criteria for colon cancer: Do the complex modifications improve prognostic assessment? J Am Coll Surg. 217:181–190. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Benedix F, Kube R, Meyer F, Schmidt U, Gastinger I and Lippert H; Colon/Rectum Carcinomas (Primary Tumor) Study Group, : Comparison of 17,641 patients with right- and left-sided colon cancer: Differences in epidemiology, perioperative course, histology and survival. Dis Colon Rectum. 53:57–64. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Papagiorgis P, Oikonomakis I, Karapanagiotou I, Wexner SD and Nikiteas N: The impact of tumor location on the histopathologic expression of colorectal cancer. J Buon. 11:317–321. 2006.PubMed/NCBI

33 

Glebov OK, Rodriguez LM, Nakahara K, Jenkins J, Cliatt J, Humbyrd CJ, DeNobile J, Soballe P, Simon R, Wright G, et al: Distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol Biomarkers Prev. 12:755–762. 2003.PubMed/NCBI

34 

Azzoni C, Bottarelli L, Campanini N, Di Cola G, Bader G, Mazzeo A, Salvemini C, Morari S, Di Mauro D, Donadei E, et al: Distinct molecular patterns based on proximal and distal sporadic colorectal cancer: Arguments for different mechanisms in the tumorigenesis. Int J Colorectal Dis. 22:115–126. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, Fan ST, Luk JM, Wigler M, Hannon GJ, et al: Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell. 125:1253–1267. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT, Znder L, Lowe SW, Poon RT and Luk JM: Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer. 115:4576–4585. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Irvine KD: Integration of intercellular signaling through the Hippo pathway. Semin Cell Dev Biol. 23:812–817. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Zhao B, Li L and Guan KL: Hippo signaling at a glance. J Cell Sci. 123:4001–4006. 2010. View Article : Google Scholar : PubMed/NCBI

39 

DiMeo TA, Anderson K, Phadke P, Fan C, Perou CM, Naber S and Kuperwasser C: A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res. 69:5364–5373. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2018
Volume 15 Issue 4

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Cho, S.Y., Gwak, J.W., Shin, Y.C., Moon, D., Ahn, J., Sol, H.W. ... Kim, J.S. (2018). Expression of Hippo pathway genes and their clinical significance in colon adenocarcinoma. Oncology Letters, 15, 4926-4936. https://doi.org/10.3892/ol.2018.7911
MLA
Cho, S. Y., Gwak, J. W., Shin, Y. C., Moon, D., Ahn, J., Sol, H. W., Kim, S., Kim, G., Shin, H. M., Lee, K. H., Kim, J. Y., Kim, J. S."Expression of Hippo pathway genes and their clinical significance in colon adenocarcinoma". Oncology Letters 15.4 (2018): 4926-4936.
Chicago
Cho, S. Y., Gwak, J. W., Shin, Y. C., Moon, D., Ahn, J., Sol, H. W., Kim, S., Kim, G., Shin, H. M., Lee, K. H., Kim, J. Y., Kim, J. S."Expression of Hippo pathway genes and their clinical significance in colon adenocarcinoma". Oncology Letters 15, no. 4 (2018): 4926-4936. https://doi.org/10.3892/ol.2018.7911