Open Access

Effect of NOS1 regulating ABCG2 expression on proliferation and apoptosis of cervical cancer cells

  • Authors:
    • Mingde Ding
    • Hui Zhang
    • Lei Liu
    • Ruilan Liang
  • View Affiliations

  • Published online on: November 30, 2018     https://doi.org/10.3892/ol.2018.9786
  • Pages: 1531-1536
  • Copyright: © Ding et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The expression of nitric oxide synthase 1 (NOS1) and adenosine triphosphate-binding cassette sub-family G member 2 (ABCG2) in cervical cancer tissues was investigated. The messenger ribonucleic acid (mRNA) levels of NOS1 and ABCG2 in 40 cervical cancer specimens and 20 normal cervical specimens were detected via reverse transcription-polymerase chain reaction, and the correlation between them was analyzed via Pearson's correlation analysis. The protein expression levels were detected via western blotting. Moreover, the regulatory mode between NOS1 and ABCG2 and the effects on proliferation and apoptosis of cervical cancer cells were analyzed using the lentiviral transfection technique. The mRNA levels of NOS1 and ABCG2 in the cervical cancer group were significantly increased compared with those in the normal cervical control group (P<0.05). There was a positive correlation between NOS1 and ABCG2 mRNA expression levels in cervical cancer tissues (r=1.246, P=0.014). HeLa and C-33A cell lines with relatively high expression levels of NOS1 and ABCG2 were selected for the in vitro study. After interference in the NOS1 expression in HeLa and C-33A cells with sh-NOS1, the protein expression of ABCG2 was also decreased. However, the protein expression level of NOS1 remained unchanged after interference in the ABCG2 expression (P<0.05). After interference in the NOS1 expression, the proliferation capacities of HeLa and C-33A cells were significantly decreased, but the apoptosis levels were obviously increased (P<0.05). The mRNA expression of NOS1 and ABCG2 in cervical cancer tissues is significantly increased. NOS1, as an upstream signal regulator of ABCG2, regulates the growth and apoptosis of tumor cells. Both NOS1 and ABCG2 are important proliferation-promoting oncogenes in cervical cancer, which are expected to provide a certain theoretical basis for the treatment of cervical cancer.

References

1 

Vaccarella S, Franceschi S, Engholm G, Lönnberg S, Khan S and Bray F: 50 years of screening in the Nordic countries: Quantifying the effects on cervical cancer incidence. Br J Cancer. 111:965–969. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Pfaendler KS and Tewari KS: Changing paradigms in the systemic treatment of advanced cervical cancer. Am J Obstet Gynecol. 214:22–30. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Ronco G, Dillner J, Elfström KM, Tunesi S, Snijders PJ, Arbyn M, Kitchener H, Segnan N, Gilham C, Giorgi-Rossi P, et al: International HPV screening working group: Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. Lancet. 383:524–532. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Lo Faro ML, Fox B, Whatmore JL, Winyard PG and Whiteman M: Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide. 41:38–47. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Bogdan C: Nitric oxide synthase in innate and adaptive immunity: An update. Trends Immunol. 36:161–178. 2015. View Article : Google Scholar : PubMed/NCBI

6 

King AL, Polhemus DJ, Bhushan S, Otsuka H, Kondo K, Nicholson CK, Bradley JM, Islam KN, Calvert JW, Tao YX, et al: Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci USA. 111:3182–3187. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Marigo I, Zilio S, Desantis G, Mlecnik B, Agnellini AHR, Ugel S, Sasso MS, Qualls JE, Kratochvill F, Zanovello P, et al: T cell cancer therapy requires CD40-CD40L activation of tumor necrosis factor and inducible nitric-oxide-synthase-producing dendritic cells. Cancer Cell. 30:377–390. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Guo FQ and Crawford NM: Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell. 17:3436–3450. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Ambs S, Merriam WG, Bennett WP, Felley-Bosco E, Ogunfusika MO, Oser SM, Klein S, Shields PG, Billiar TR and Harris CC: Frequent nitric oxide synthase-2 expression in human colon adenomas: Implication for tumor angiogenesis and colon cancer progression. Cancer Res. 58:334–341. 1998.PubMed/NCBI

10 

Xu W, Liu LZ, Loizidou M, Ahmed M and Charles IG: The role of nitric oxide in cancer. Cell Res. 12:311–320. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Wang F, Xue X, Wei J, An Y, Yao J, Cai H, Wu J, Dai C, Qian Z, Xu Z, et al: hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br J Cancer. 103:567–574. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Jiang Y, He Y, Li H, Li HN, Zhang L, Hu W, Sun YM, Chen FL and Jin XM: Expressions of putative cancer stem cell markers ABCB1, ABCG2, and CD133 are correlated with the degree of differentiation of gastric cancer. Gastric Cancer. 15:440–450. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Fionda C, Abruzzese MP, Zingoni A, Soriani A, Ricci B, Molfetta R, Paolini R, Santoni A and Cippitelli M: Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: Role of DNA damage response activation. BMC Cancer. 15:172015. View Article : Google Scholar : PubMed/NCBI

15 

Fahey JM and Girotti AW: Accelerated migration and invasion of prostate cancer cells after a photodynamic therapy-like challenge: Role of nitric oxide. Nitric Oxide. 49:47–55. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Puglisi MA, Cenciarelli C, Tesori V, Cappellari M, Martini M, Di Francesco AM, Giorda E, Carsetti R, Ricci-Vitiani L and Gasbarrini A: High nitric oxide production, secondary to inducible nitric oxide synthase expression, is essential for regulation of the tumour-initiating properties of colon cancer stem cells. J Pathol. 236:479–490. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Wang X, Chandrashekar K, Wang L, Lai EY, Wei J, Zhang G, Wang S, Zhang J, Juncos LA and Liu R: Inhibition of nitric oxide synthase 1 induces salt-sensitive hypertension in nitric oxide synthase 1α knockout and wild-type mice. Hypertension. 67:792–799. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Rabender CS, Alam A, Sundaresan G, Cardnell RJ, Yakovlev VA, Mukhopadhyay ND, Graves P, Zweit J and Mikkelsen RB: The role of nitric oxide synthase uncoupling in tumor progression. Mol Cancer Res. 13:1034–1043. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Wang J, He P, Gaida M, Yang S, Schetter AJ, Gaedcke J, Ghadimi BM, Ried T, Yfantis H, Lee D, et al: Inducible nitric oxide synthase enhances disease aggressiveness in pancreatic cancer. Oncotarget. 7:52993–53004. 2016.PubMed/NCBI

20 

Wang J, Yang S, He P, Schetter AJ, Gaedcke J, Ghadimi BM, Ried T, Yfantis HG, Lee DH, Gaida MM, et al: Endothelial nitric oxide synthase traffic inducer (NOSTRIN) is a negative regulator of disease aggressiveness in pancreatic cancer. Clin Cancer Res. 22:5992–6001. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Basudhar D, Somasundaram V, de Oliveira GA, Kesarwala A, Heinecke JL, Cheng RY, Glynn SA, Ambs S, Wink DA and Ridnour LA: Nitric oxide synthase-2-derived nitric oxide drives multiple pathways of breast cancer progression. Antioxid Redox Signal. 26:1044–1058. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Tang Y, Hou J, Li G, Song Z, Li X, Yang C, Liu W, Hu Y and Xu Y: ABCG2 regulates the pattern of self-renewing divisions in cisplatin-resistant non-small cell lung cancer cell lines. Oncol Rep. 32:2168–2174. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Noguchi K, Katayama K and Sugimoto Y: Human ABC transporter ABCG2/BCRP expression in chemoresistance: Basic and clinical perspectives for molecular cancer therapeutics. Pharm Genomics Pers Med. 7:53–64. 2014.

24 

Lagas JS, van Waterschoot RA, Sparidans RW, Wagenaar E, Beijnen JH and Schinkel AH: Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther. 9:319–326. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

February 2019
Volume 17 Issue 2

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Ding, M., Zhang, H., Liu, L., & Liang, R. (2019). Effect of NOS1 regulating ABCG2 expression on proliferation and apoptosis of cervical cancer cells. Oncology Letters, 17, 1531-1536. https://doi.org/10.3892/ol.2018.9786
MLA
Ding, M., Zhang, H., Liu, L., Liang, R."Effect of NOS1 regulating ABCG2 expression on proliferation and apoptosis of cervical cancer cells". Oncology Letters 17.2 (2019): 1531-1536.
Chicago
Ding, M., Zhang, H., Liu, L., Liang, R."Effect of NOS1 regulating ABCG2 expression on proliferation and apoptosis of cervical cancer cells". Oncology Letters 17, no. 2 (2019): 1531-1536. https://doi.org/10.3892/ol.2018.9786