Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review)

  • Authors:
    • Jie Zheng
  • View Affiliations

  • Published online on: September 20, 2012
  • Pages: 1151-1157
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Metabolic activities in normal cells rely primarily on mitochondrial oxidative phosphorylation (OXPHOS) to generate ATP for energy. Unlike in normal cells, glycolysis is enhanced and OXPHOS capacity is reduced in various cancer cells. It has long been believed that the glycolytic phenotype in cancer is due to a permanent impairment of mitochondrial OXPHOS, as proposed by Otto Warburg. This view is challenged by recent investigations which find that the function of mitochondrial OXPHOS in most cancers is intact. Aerobic glycolysis in many cancers is the combined result of various factors such as oncogenes, tumor suppressors, a hypoxic microenvironment, mtDNA mutations, genetic background and others. Understanding the features and complexity of the cancer energy metabolism will help to develop new approaches in early diagnosis and effectively target therapy of cancer.



WH KoppenolPL BoundsCV DangOtto Warburg’s contributions to current concepts of cancer metabolismNat Rev Cancer113253372011


G KroemerJ PouyssegurTumor cell metabolism: cancer’s Achilles’ heelCancer Cell134724822008


CE GriguerCR OlivaGY GillespieGlucose metabolism heterogeneity in human and mouse malignant glioma cell linesJ Neurooncol74123133200510.1007/s11060-004-6404-616193382


VR FantinJ St-PierreP LederAttenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenanceCancer Cell9425434200610.1016/j.ccr.2006.04.02316766262


PP HsuDM SabatiniCancer cell metabolism: Warburg and beyondCell134703707200810.1016/j.cell.2008.08.02118775299


HY LimQS HoJ LowM ChoolaniKP WongRespiratory competent mitochondria in human ovarian and peritoneal cancerMitochondrion11437443201110.1016/j.mito.2010.12.01521211574


DA ScottAD RichardsonFV FilippCA KnutzenGG ChiangZA RonaiAL OstermanJW SmithComparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effectJ Biol Chem2864262642634201110.1074/jbc.M111.28204621998308


XL ZuM GuppyCancer metabolism: facts, fantasy, and fictionBiochem Biophys Res Commun313459465200410.1016/j.bbrc.2003.11.13614697210


GA BrooksCell-cell and intracellular lactate shuttlesJ Physiol58755915600200910.1113/jphysiol.2009.17835019805739


SN VaishnaviAG VlassenkoMM RundleAZ SnyderMA MintunME RaichleRegional aerobic glycolysis in the human brainProc Natl Acad Sci USA1071775717762201010.1073/pnas.101045910720837536


T PfeifferS SchusterS BonhoefferCooperation and competition in the evolution of ATP-producing pathwaysScience292504507200110.1126/science.105807911283355


A MiccheliA TomassiniC PuccettiM ValerioG PelusoF TuccilloM CalvaniC ManettiF ContiMetabolic profiling by 13C-NMR spectroscopy: [1,2–13C2]glucose reveals a heterogeneousmetabolism in human leukemia T cellsBiochimie884374482006


MV BerridgePM HerstAS TanMetabolic flexibility and cell hierarchy in metastatic cancerMitochondrion10584588201010.1016/j.mito.2010.08.00220709626


JL ChenJE LucasT SchroederS MoriJ WuJ NevinsM DewhirstM WestJT ChiThe genomic analysis of lactic acidosis and acidosis response in human cancersPLoS Genet4e1000293200810.1371/journal.pgen.100029319057672


A MarusykK PolyakTumor heterogeneity: causes and consequencesBiochim Biophys Acta1805105117201019931353


K SuganumaH MiwaN ImaiM ShikamiM GotouM GotoS MizunoM TakahashiH YamamotoA HiramatsuEnergy metabolism of leukemia cells: glycolysis versus oxidative phosphorylationLeuk Lymphoma5121122119201010.3109/10428194.2010.51296620860495


R Moreno-SánchezS Rodríguez-EnríquezA Marín-HernándezE SaavedraEnergy metabolism in tumor cellsFEBS J274139314182007


C JoseN BellanceR RossignolChoosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma?Biochim Biophys Acta1807552561201120955683


K SmolkováL Plecitá-HlavatáN BellanceG BenardR RossignolP JežekWaves of gene regulation suppress and then restore oxidative phosphorylation in cancer cellsInt J Biochem Cell Biol43950968201120460169


PM HerstMV BerridgeCell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell linesBiochim Biophys Acta1767170177200710.1016/j.bbabio.2006.11.01817266920


S Rodríguez-EnríquezL Carreño-FuentesJC Gallardo-PérezE SaavedraH QuezadaA VegaA Marín-HernándezV Olín-SandovalME Torres-MárquezR Moreno-SánchezOxidative phosphorylation is impaired by prolonged hypoxia in breast and possibly in cervix carcinomaInt J Biochem Cell Biol4217441751201020654728


G BonuccelliA TsirigosD Whitaker-MenezesS PavlidesRG PestellB ChiavarinaPG FrankN FlomenbergA HowellUE Martinez-OutschoornKetones and lactate ‘fuel’ tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolismCell Cycle9350635142010


S PavlidesD Whitaker-MenezesR Castello-CrosN FlomenbergAK WitkiewiczPG FrankMC CasimiroC WangP FortinaS AddyaRG PestellUE Martinez-OutschoornF SotgiaMP LisantiThe reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stromaCell Cycle839844001200910.4161/cc.8.23.1023819923890


H KiarisI ChatzistamouCh KalofoutisH KoutseliniCh PiperiA KalofoutisTumour-stroma interactions in carcinogenesis: basic aspects and perspectivesMol Cell Biochem261117122200410.1023/B:MCBI.0000028746.54447.6c15362494


MI KoukourakisA GiatromanolakiAL HarrisE SivridisComparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stromaCancer Res66632637200610.1158/0008-5472.CAN-05-3260


O FeronPyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cellsRadiother Oncol92329333200910.1016/j.radonc.2009.06.02519604589


VC SandulacheTJ OwCR PickeringMJ FrederickG ZhouI FoktM Davis-MalesevichW PriebeJN MyersGlucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cellsCancer11729262938201121692052


PE PorporatoS DhupRK DadhichT CopettiP SonveauxAnticancer targets in the glycolytic metabolism of tumors: a comprehensive reviewFront Pharmacol249201110.3389/fphar.2011.0004921904528


M BélangerI AllamanPJ MagistrettiBrain energy metabolism: focus on astrocyte-neuron metabolic cooperationCell Metab14724738201122152301


SY LuntMG Vander HeidenAerobic glycolysis: meeting the metabolic requirements of cell proliferationAnnu Rev Cell Dev Biol27441464201110.1146/annurev-cellbio-092910-15423721985671


MG Vander HeidenLC CantleyCB ThompsonUnderstanding the Warburg effect: the metabolic requirements of cell proliferationScience32410291033200919460998


RA GatenbyRJ GilliesA microenvironmental model of carcinogenesisNat Rev Cancer85661200810.1038/nrc225518059462


P VaupelMetabolic microenvironment of tumor cells: a key factor in malignant progressionExp Oncol32125127201021403604


NC DenkoHypoxia, HIF1 and glucose metabolism in the solid tumourNat Rev Cancer8705713200810.1038/nrc246819143055


V NogueiraY ParkCC ChenPZ XuML ChenI TonicT UntermanN HayAkt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosisCancer Cell14458470200810.1016/j.ccr.2008.11.00319061837


D ChandraKK SinghGenetic insights into OXPHOS defect and its role in cancerBiochim Biophys Acta1807620625201110.1016/j.bbabio.2010.10.02321074512


KM OwensM KulawiecMM DesoukiA VanniarajanKK SinghImpaired OXPHOS complex III in breast cancerPLoS One6e23846201110.1371/journal.pone.002384621901141


F López-RíosM Sánchez-AragóE García-GarcíaAD OrtegaJR BerrenderoF Pozo-RodríguezA López-EncuentraC BallestínJM CuezvaLoss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomasCancer Res6790139017200717909002


DR WiseRJ DeBerardinisA MancusoN SayedXY ZhangHK PfeifferI NissimE DaikhinM YudkoffSB McMahonCB ThompsonMyc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addictionProc Natl Acad Sci USA1051878218787200810.1073/pnas.081019910519033189


RJ DeBerardinisT ChengQ’s next: the diverse functions of glutamine in metabolism, cell biology and cancerOncogene293133242010


LJ ReitzerBM WiceD KennellEvidence that glutamine, not sugar, is the major energy source for cultured HeLa cellsJ Biol Chem254266926761979429309


M GuppyP LeedmanX ZuV RussellContribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cellsBiochem J364309315200211988105


M YunevaN ZamboniP OefnerR SachidanandamY LazebnikDeficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cellsJ Cell Biol17893105200710.1083/jcb.20070309917606868


C YangJ SudderthT DangRM BachooJG McDonaldRJ DeBerardinisGlioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signalingCancer Res6979867993200910.1158/0008-5472.CAN-09-226619826036


YH KoZ LinN FlomenbergRG PestellA HowellF SotgiaMP LisantiUE Martinez-OutschoornGlutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: Implications for preventing chemotherapy resistanceCancer Biol Ther1210851097201110.4161/cbt.12.12.18671


CV DangA LeP GaoMYC-induced cancer cell energy metabolism and therapeutic opportunitiesClin Cancer Res1564796483200910.1158/1078-0432.CCR-09-088919861459


M YunevaFinding an ‘Achilles’ heel’ of cancer: the role of glucose and glutamine metabolism in the survival of transformed cellsCell Cycle7208320892008


J ZhengFeatures of energy metabolism and clinical application in cancer growthChin J Cell Biol33115811652011


AR MullenWW WheatonES JinPH ChenLB SullivanT ChengY YangWM LinehanNS ChandelRJ DeBerardinisReductive carboxylation supports growth in tumour cells with defective mitochondriaNature481385388201222101431


M BuzzaiDE BauerRG JonesRJ DeberardinisG HatzivassiliouRL ElstromCB ThompsonThe glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidationOncogene2441654173200510.1038/sj.onc.120862215806154


RL ElstromDE BauerM BuzzaiR KarnauskasMH HarrisDR PlasH ZhuangRM CinalliA AlaviCM RudinCB ThompsonAkt stimulates aerobic glycolysis in cancer cellsCancer Res6438923899200410.1158/0008-5472.CAN-03-290415172999


AJ LevineAM Puzio-KuterThe control of the metabolic switch in cancers by oncogenes and tumor suppressor genesScience33013401344201010.1126/science.119349421127244


JP BayleyP DevileeThe Warburg effect in 2012Curr Opin Oncol246267201210.1097/CCO.0b013e32834deb9e


Y HuW LuG ChenP WangZ ChenY ZhouM OgasawaraD TrachoothamL FengH PelicanoK-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysisCell Res22399412201210.1038/cr.2011.14521876558


AJ MajmundarWJ WongMC SimonHypoxia-inducible factors and the response to hypoxic stressMol Cell40294309201010.1016/j.molcel.2010.09.02220965423


K DüvelJL YeciesS MenonP RamanAI LipovskyAL SouzaE TriantafellowQ MaR GorskiS CleaverActivation of a metabolic gene regulatory network downstream of mTOR complex 1Mol Cell39171183201020670887


Y Pylayeva-GuptaE GrabockaD Bar-SagiRAS oncogenes: weaving a tumorigenic webNat Rev Cancer11761774201110.1038/nrc310621993244


JL YeciesBD ManningmTOR links oncogenic signaling to tumor cell metabolismJ Mol Med89221228201110.1007/s00109-011-0726-621301797


JJ LumT BuiM GruberJD GordanRJ DeBerardinisKL CovelloMC SimonCB ThompsonThe transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysisGenes Dev2110371049200710.1101/gad.152910717437992


AM WeljieFR JirikHypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effectInt J Biochem Cell Biol43981989201110.1016/j.biocel.2010.08.00920797448


JA BertoutSA PatelMC SimonThe impact of O2 availability on human cancerNat Rev Cancer8967975200810.1038/nrc254018987634


Q SunX ChenJ MaH PengF WangX ZhaY WangY JingH YangR ChenMammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growthProc Natl Acad Sci USA10841294134201110.1073/pnas.101476910821325052


HR ChristofkMG Vander HeidenMH HarrisA RamanathanRE GersztenR WeiMD FlemingSL SchreiberLC CantleyThe M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growthNature452230233200810.1038/nature0673418337823


CJ DavidM ChenM AssanahP CanollJL ManleyHnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancerNature463364368201010.1038/nature0869720010808


W LuoH HuR ChangJ ZhongM KnabelR O’MeallyRN ColeA PandeyGL SemenzaPyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1Cell145732744201110.1016/j.cell.2011.03.05421620138


K BluemleinNM GrüningRG FeichtingerH LehrachB KoflerM RalserNo evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesisOncotarget2393400201121789790


RJ DeBerardinisJJ LumG HatzivassiliouCB ThompsonThe biology of cancer: metabolic reprogramming fuels cell growth and proliferationCell Metab71120200810.1016/j.cmet.2007.10.00218177721


P GaoI TchernyshyovTC ChangYS LeeK KitaT OchiKI ZellerAM De MarzoJE Van EykJT MendellCV Dangc-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolismNature458762765200910.1038/nature0782319219026


CV DangJW KimP GaoJ YusteinThe interplay between MYC and HIF in cancerNat Rev Cancer85156200810.1038/nrc227418046334


S MatobaJG KangWD PatinoA WraggM BoehmO GavrilovaPJ HurleyF BunzPM Hwangp53 regulates mitochondrial respirationScience31216501653200610.1126/science.112686316728594


W MaHJ SungJY ParkS MatobaPM HwangA pivotal role for p53: balancing aerobic respiration and glycolysisJ Bioenerg Biomembr39243246200710.1007/s10863-007-9083-017551815


SJ YeungJ PanMH LeeRoles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancerCell Mol Life Sci6539813999200810.1007/s00018-008-8224-x18766298


PY WangJ ZhuangPM Hwangp53: exercise capacity and metabolismCurr Opin Oncol247682201210.1097/CCO.0b013e32834de1d822123233


K BensaadA TsurutaMA SelakMN VidalK NakanoR BartronsE GottliebKH VousdenTIGAR, a p53-inducible regulator of glycolysis and apoptosisCell126107120200610.1016/j.cell.2006.05.03616839880


N VahsenC CandéJJ BrièreP BénitN JozaN LarochettePG MastroberardinoMO PequignotN CasaresV LazarAIF deficiency compromises oxidative phosphorylationEMBO J2346794689200410.1038/sj.emboj.760046115526035


S ZhouS KachhapKK SinghMitochondrial impairment in p53-deficient human cancer cellsMutagenesis18287292200310.1093/mutage/18.3.28712714696


J YangA AhmedE PoonN PerusingheA de Haven BrandonG BoxM ValentiS EcclesK RouschopB WoutersM AshcroftSmall-molecule activation of p53 blocks hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in vivo and leads to tumor cell apoptosis in normoxia and hypoxiaMol Cell Biol2922432253200910.1128/MCB.00959-0819223463


M YamakuchiCD LottermanC BaoRH HrubanB KarimJT MendellD HusoCJ Lowensteinp53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesisProc Natl Acad Sci USA10763346339201010.1073/pnas.091108210720308559


H KondohME LleonartJ GilJ WangP DeganG PetersD MartinezA CarneroD BeachGlycolytic enzymes can modulate cellular life spanCancer Res65177185200515665293

Related Articles

Journal Cover

December 2012
Volume 4 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
Zheng, J. (2012). Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncology Letters, 4, 1151-1157.
Zheng, J."Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review)". Oncology Letters 4.6 (2012): 1151-1157.
Zheng, J."Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review)". Oncology Letters 4, no. 6 (2012): 1151-1157.