Open Access

BRAF‑activated long non‑coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma

  • Authors:
    • Yong Wang
    • Qinhao Guo
    • Yan Zhao
    • Jiejing Chen
    • Shuwei Wang
    • Jun Hu
    • Yueming Sun
  • View Affiliations

  • Published online on: August 28, 2014     https://doi.org/10.3892/ol.2014.2487
  • Pages: 1947-1952
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Long non‑coding RNAs (lncRNAs) are novel regulators in cancer biology. BRAF‑activated lncRNA (BANCR) is overexpressed in melanoma and has a potential functional role in melanoma cell migration. However, little is known about the role of BANCR in the development of papillary thyroid carcinoma (PTC). In the present study, BANCR expression was examined in six pairs of PTC and matched adjacent normal tissues. The results revealed that BANCR levels were significantly higher in the PTC tissues and PTC IHH‑4 cells compared with the normal controls. Knockdown of BANCR in the IHH‑4 cells inhibited proliferation and increased apoptosis of the cells in vitro. Further investigation of the underlying mechanisms revealed that BANCR markedly activated autophagy. Overexpression of BANCR inhibited apoptosis in the IHH‑4 cells, whereas inhibition of autophagy stimulated apoptosis in the BANCR‑overexpressed cells. BANCR overexpression also increased cell proliferation and the inhibition of autophagy abrogated BANCR overexpression‑induced cell proliferation. In addition, the overexpression of BANCR resulted in an increase in the ratio of LC3‑II/LC3‑I, a marker for autophagy, while the knockdown of BANCR decreased the ratio of LC3‑II/LC3‑I. These results revealed that BANCR expression levels are upregulated in PTC. Additionally, BANCR increases PTC cell proliferation, which could activate autophagy.

References

1 

Sherman SI: Thyroid carcinoma. Lancet. 361:501–511. 2003.

2 

Nakagawa T, Endo H, Yokoyama M, et al: Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. Biochem Biophys Res Commun. 436:319–324. 2013.

3 

Zhu L and Xu PC: Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression. Biochem Biophys Res Commun. 432:612–617. 2013.

4 

Qi P and Du X: The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol. 26:155–165. 2013.

5 

Flockhart RJ, Webster DE, Qu K, et al: BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res. 22:1006–1014. 2012.

6 

McCarthy N: Epigenetics. Going places with BANCR. Nat Rev Cancer. 12:4512012.

7 

Davies H, Bignell GR, Cox C, et al: Mutations of the BRAF gene in human cancer. Nature. 417:949–954. 2002.

8 

Howell GM, Nikiforova MN, Carty SE, et al: BRAF V600E mutation independently predicts central compartment lymph node metastasis in patients with papillary thyroid cancer. Ann Surg Oncol. 20:47–52. 2013.

9 

Amelio I, Melino G and Knight RA: Cell death pathology: cross-talk with autophagy and its clinical implications. Biochem Biophys Res Commun. 414:277–281. 2011.

10 

Ding WX, Chen X and Yin XM: Tumor cells can evade dependence on autophagy through adaptation. Biochem Biophys Res Commun. 425:684–688. 2012.

11 

Maddodi N, Huang W, Havighurst T, Kim K, Longley BJ and Setaluri V: Induction of autophagy and inhibition of melanoma growth in vitro and in vivo by hyperactivation of oncogenic BRAF. J Invest Dermatol. 130:1657–1667. 2010.

12 

Zhang YC and Chen YQ: Long noncoding RNAs: new regulators in plant development. Biochem Biophys Res Commun. 436:111–114. 2013.

13 

Luo M, Li Z, Wang W, Zeng Y, Liu Z and Qiu J: Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 333:213–221. 2013.

14 

Cheng W, Zhang Z and Wang J: Long noncoding RNAs: new players in prostate cancer. Cancer Lett. 339:8–14. 2013.

15 

Fan M, Li X, Jiang W, Huang Y, Li J and Wang Z: A long non-coding RNA, PTCSC3, as a tumor suppressor and a target of miRNAs in thyroid cancer cells. Exp Ther Med. 5:1143–1146. 2013.

16 

Yoon H, He H, Nagy R, et al: Identification of a novel noncoding RNA gene, NAMA, that is downregulated in papillary thyroid carcinoma with BRAF mutation and associated with growth arrest. Int J Cancer. 121:767–775. 2007.

17 

Liu D, Liu Z, Condouris S and Xing M: BRAF V600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J Clin Endocrinol Metab. 92:2264–2271. 2007.

18 

Zhou S, Zhao L, Kuang M, et al: Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde? Cancer Lett. 323:115–127. 2012.

Related Articles

Journal Cover

November 2014
Volume 8 Issue 5

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wang, Y., Guo, Q., Zhao, Y., Chen, J., Wang, S., Hu, J., & Sun, Y. (2014). BRAF‑activated long non‑coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma. Oncology Letters, 8, 1947-1952. https://doi.org/10.3892/ol.2014.2487
MLA
Wang, Y., Guo, Q., Zhao, Y., Chen, J., Wang, S., Hu, J., Sun, Y."BRAF‑activated long non‑coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma". Oncology Letters 8.5 (2014): 1947-1952.
Chicago
Wang, Y., Guo, Q., Zhao, Y., Chen, J., Wang, S., Hu, J., Sun, Y."BRAF‑activated long non‑coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma". Oncology Letters 8, no. 5 (2014): 1947-1952. https://doi.org/10.3892/ol.2014.2487