USP22 promotes epithelial-mesenchymal transition via the FAK pathway in pancreatic cancer cells

  • Authors:
    • Zhen Ning
    • Aman Wang
    • Jinxiao Liang
    • Yunpeng  Xie
    • Jiwei Liu
    • Qiu Yan
    • Zhongyu Wang
  • View Affiliations

  • Published online on: July 23, 2014     https://doi.org/10.3892/or.2014.3354
  • Pages: 1451-1458
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Epithelial-mesenchymal transition (EMT) contributes to the occurrence and development of tumors, particularly to the promotion of tumor invasion and metastasis. As a newly discovered ubiquitin hydrolase family member, USP22 plays a key role in the malignant transformation of tumors and the regulation of the cell cycle. However, recent studies on USP22 have primarily focused on its role in cell cycle regulation, and the potential mechanism underlying the promotion of tumor invasion and metastasis by abnormal USP22 expression has not been reported. Our studies revealed that the overexpression of USP22 in PANC-1 cells promoted Ezrin redistribution and phosphorylation and cytoskeletal remodeling, upregulated expression of the transcription factors Snail and ZEB1 to promote EMT, and increased cellular invasion and migration. In contrast, blockade of USP22 expression resulted in the opposite effects. In addition, the focal adhesion kinase (FAK) signaling pathway was shown to play a key role in the process of EMT induction in PANC-1 cells by USP22. Thus, the present study suggests that USP22 acts as a regulatory protein for EMT in pancreatic cancer, which may provide a new approach for the targeted therapy of pancreatic cancer.

References

1 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002. View Article : Google Scholar : PubMed/NCBI

3 

Brabletz T: EMT and MET in metastasis: where are the cancer stem cells? Cancer Cell. 22:699–701. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Natalwala A, Spychal R and Tselepis C: Epithelial-mesenchymal transition mediated tumourigenesis in the gastrointestinal tract. World J Gastroenterol. 14:3792–3797. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar

6 

Hidalgo M: Pancreatic cancer. N Engl J Med. 362:1605–1617. 2010. View Article : Google Scholar

7 

Pan JJ and Yang MH: The role of epithelial-mesenchymal transition in pancreatic cancer. J Gastrointest Oncol. 2:151–156. 2011.PubMed/NCBI

8 

Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ and Hotz HG: Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res. 13:4769–4776. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Takano S, Kanai F, Jazag A, Ijichi H, Yao J, Ogawa H, Enomoto N, Omata M and Nakao A: Smad4 is essential for down-regulation of E-cadherin induced by TGF-βin pancreatic cancer cell line PANC-1. J Biochem. 141:345–351. 2007.

10 

Krantz SB, Shields MA, Dangi-Garimella S, Bentrem DJ and Munshi HG: Contribution of epithelial-mesenchymal transition to pancreatic cancer progression. Cancers. 2:2084–2097. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Shah AN, Summy JM, Zhang J, Park SI, Parikh NU and Gallick GE: Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol. 14:3629–3637. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Lee HJ, Kim MS, Shin JM, Park TJ, Chung HM and Baek KH: The expression patterns of deubiquitinating enzymes, USP22 and Usp22. Gene Expr Patterns. 6:277–284. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Zhang XY, Pfeiffer HK, Thorne AW and McMahon SB: USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A. Cell Cycle. 7:1522–1524. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Atanassov BS and Dent SY: USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1. EMBO Rep. 12:924–930. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Park IK1, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ and Clarke MF: Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 423:302–305. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Zhang XY, Varthi M, Sykes SM, Phillips C, Warzecha C, Zhu W, Wyce A, Thorne AW, Berger SL and McMahon SB: The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell. 29:102–111. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Yang DD, Cui BB, Sun LY, Zheng HQ, Huang Q, Tong JX and Zhang QF: The co-expression of USP22 and BMI-1 may promote cancer progression and predict therapy failure in gastric carcinoma. Cell Biochem Biophys. 61:703–710. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Shook D and Keller R: Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev. 120:1351–1383. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Yang J and Weinberg RA: Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Glinsky GV: Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle. 5:1208–1216. 2006.

21 

Lin Z, Yang H, Kong Q, Li J, Lee SM, Gao B, Dong H, Wei J, Song J, Zhang DD and Fang D: USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development. Mol Cell. 46:484–494. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Bruce B, Khanna G, Ren L, Landberg G, Jirström K, Powell C, Borczuk A, Keller ET, Wojno KJ, Meltzer P, Baird K, McClatchey A, Bretscher A, Hewitt SM and Khanna C: Expression of the cytoskeleton linker protein ezrin in human cancers. Clin Exp Metastasis. 24:69–78. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Hunter KW: Ezrin, a key component in tumor metastasis. Trends Mol Med. 10:201–204. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Fievet BT, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D and Arpin M: Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol. 164:653–659. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Thompson EW and Williams ED: EMT and MET in carcinoma - clinical observations, regulatory pathways and new models. Clin Exp Metastasis. 25:591–592. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Pujuguet P, Del Maestro L, Gautreau A, Louvard D and Arpin M: Ezrin regulates E-cadherin-dependent adherens junction assembly through Rac1 activation. Mol Biol Cell. 14:2181–2191. 2003. View Article : Google Scholar : PubMed/NCBI

27 

Egeblad M and Werb Z: New functions for the matrix metal-loproteinases in cancer progression. Nat Rev Cancer. 2:161–174. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Duong TD and Erickson CA: MMP-2 plays an essential role in producing epithelial-mesenchymal transformations in the avian embryo. Dev Dyn. 229:42–53. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Borghaei RC, Rawlings PL Jr, Javadi M and Woloshin J: NF-κB binds to a polymorphic repressor element in the MMP-3 promoter. Biochem Biophys Res Commun. 316:182–188. 2004.

30 

Hanks SK and Polte TR: Signaling through focal adhesion kinase. Bioessays. 19:137–145. 1997. View Article : Google Scholar : PubMed/NCBI

31 

Schaller MD: Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci. 123:1007–1013. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Chen Y, Wang D, Guo Z, Zhao J, Wu B, Deng H, Zhou T, Xiang H, Gao F, Yu X, Liao J, Ward T, Xia P, Emenari C, Ding X, Thompson W, Ma K, Zhu J, Aikhionbare F, Dou K, Cheng SY and Yao X: Rho kinase phosphorylation promotes ezrin-mediated metastasis in hepatocellular carcinoma. Cancer Res. 71:1721–1729. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2014
Volume 32 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Ning, Z., Wang, A., Liang, J., Xie, Y., Liu, J., Yan, Q., & Wang, Z. (2014). USP22 promotes epithelial-mesenchymal transition via the FAK pathway in pancreatic cancer cells. Oncology Reports, 32, 1451-1458. https://doi.org/10.3892/or.2014.3354
MLA
Ning, Z., Wang, A., Liang, J., Xie, Y., Liu, J., Yan, Q., Wang, Z."USP22 promotes epithelial-mesenchymal transition via the FAK pathway in pancreatic cancer cells". Oncology Reports 32.4 (2014): 1451-1458.
Chicago
Ning, Z., Wang, A., Liang, J., Xie, Y., Liu, J., Yan, Q., Wang, Z."USP22 promotes epithelial-mesenchymal transition via the FAK pathway in pancreatic cancer cells". Oncology Reports 32, no. 4 (2014): 1451-1458. https://doi.org/10.3892/or.2014.3354