Chemokine receptor 7 promotes tumor migration and invasiveness via the RhoA/ROCK pathway in metastatic squamous cell carcinoma of the head and neck

  • Authors:
    • Zhongfei Xu
    • Xiaojiao Zheng
    • Liangliang Yang
    • Fayu Liu
    • Enjiao Zhang
    • Weiyi Duan
    • Shuang Bai
    • Jawad Safdar
    • Zhenning Li
    • Changfu Sun
  • View Affiliations

  • Published online on: November 27, 2014     https://doi.org/10.3892/or.2014.3631
  • Pages: 849-855
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Metastatic squamous cell carcinoma of the head and neck (SCCHN) has been shown to express chemokine receptor 7 (CCR7), which can activate signaling pathways to promote invasion and survival of SCCHN cells. We hypothesized that the RhoA/Rho-associated kinase (ROCK) pathway is involved in the CCR7-induced invasion and migration of metastatic SCCHN cells. Thus, using migration, matrigel invasion and scrape wound-healing assays, we elucidated the role of RhoA in mediating CCR7-associated cellular mobility. Pull-down assays and western blotting were used to measure RhoA and its downstream expression. Immunohistochemical staining and analysis were useful in identifying the correlation between CCR7 and RhoA expression and clinicopathological factors. The results showed that inhibition of RhoA/ROCK reduced the tumor cell migration and invasiveness induced by CCL19. Activated RhoA, proline-rich tyrosine kinase-2 (Pyk2) and cofilin induced by CCL19 were elevated, and increased RhoA, Pyk2 and cofilin activity was eliminated by CCR7mAb, RhoA/ROCK and Pyk2 inhibitors, indicating involvement of the RhoA/ROCK-Pyk2-cofilin cascade. In summary, CCR7 via RhoA/ROCK-Pyk2 cofilin pathway promotes invasion and migration of metastatic SCCHN cells.

References

1 

Chambers AF, Groom AC and MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2:563–572. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Siegel R, Naishadham D and Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Zlotnik A and Yoshie O: Chemokines: a new classification system and their role in immunity. Immunity. 12:121–127. 2000. View Article : Google Scholar : PubMed/NCBI

4 

Ben-Baruch A: Site-specific metastasis formation: chemokines as regulators of tumor cell adhesion, motility and invasion. Cell Adh Migr. 3:328–333. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Chen G, Chen SM, Wang X, Ding XF, Ding J and Meng LH: Inhibition of chemokine (CXC motif) ligand 12/chemokine (CXC motif) receptor 4 axis (CXCL12/CXCR4)-mediated cell migration by targeting mammalian target of rapamycin (mTOR) pathway in human gastric carcinoma cells. J Biol Chem. 287:12132–12141. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Nannuru KC, Sharma B, Varney ML and Singh RK: Role of chemokine receptor CXCR2 expression in mammary tumor growth, angiogenesis and metastasis. J Carcinog. 10:402011. View Article : Google Scholar

7 

Hao M, Zheng J, Hou K, et al: Role of chemokine receptor CXCR7 in bladder cancer progression. Biochem Pharmacol. 84:204–214. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Lee YS, Choi I, Ning Y, et al: Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis. Br J Cancer. 106:1833–1841. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Liu FY, Zhao ZJ, Li P, et al: NF-κB participates in chemokine receptor 7-mediated cell survival in metastatic squamous cell carcinoma of the head and neck. Oncol Rep. 25:383–391. 2011.

10 

Liu FY, Zhao ZJ, Li P, Ding X, Zong ZH and Sun CF: Mammalian target of rapamycin (mTOR) is involved in the survival of cells mediated by chemokine receptor 7 through PI3K/Akt in metastatic squamous cell carcinoma of the head and neck. Br J Oral Maxillofac Surg. 48:291–296. 2010. View Article : Google Scholar

11 

Zhao ZJ, Liu FY, Li P, Ding X, Zong ZH and Sun CF: CCL19-induced chemokine receptor 7 activates the phosphoinositide-3 kinase-mediated invasive pathway through Cdc42 in metastatic squamous cell carcinoma of the head and neck. Oncol Rep. 25:729–737. 2011.

12 

Wang J, Xi L, Hunt JL, et al: Expression pattern of chemokine receptor 6 (CCR6) and CCR7 in squamous cell carcinoma of the head and neck identifies a novel metastatic phenotype. Cancer Res. 64:1861–1866. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Bardi G, Niggli V and Loetscher P: Rho kinase is required for CCR7-mediated polarization and chemotaxis of T lymphocytes. FEBS Lett. 542:79–83. 2003. View Article : Google Scholar : PubMed/NCBI

14 

Riol-Blanco L, Sánchez-Sánchez N, Torres A, et al: The chemokine receptor CCR7 activates in dendritic cells two signaling modules that independently regulate chemotaxis and migratory speed. J Immunol. 174:4070–4080. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Cuesta-Mateos C, López-Giral S, Alfonso-Pérez M, et al: Analysis of migratory and prosurvival pathways induced by the homeostatic chemokines CCL19 and CCL21 in B-cell chronic lymphocytic leukemia. Exp Hematol. 38:756.e4–764.e4. 2010. View Article : Google Scholar

16 

Bishop AL and Hall A: Rho GTPases and their effector proteins. Biochem J. 348:241–255. 2000. View Article : Google Scholar : PubMed/NCBI

17 

Riento K and Ridley AJ: Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol. 4:446–456. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Ono S: Regulation of actin filament dynamics by actin depolymerizing factor/cofilin and actin-interacting protein 1: new blades for twisted filaments. Biochemistry. 42:13363–13370. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Olson MF: Applications for ROCK kinase inhibition. Curr Opin Cell Biol. 20:242–248. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Freitas VM, Rangel M, Bisson LF, Jaeger RG and Machado-Santelli GM: The geodiamolide H, derived from Brazilian sponge Geodia corticostylifera, regulates actin cytoskeleton, migration and invasion of breast cancer cells cultured in three-dimensional environment. J Cell Physiol. 216:583–594. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Ren XD and Schwartz MA: Determination of GTP loading on Rho. Methods Enzymol. 325:264–272. 2000. View Article : Google Scholar : PubMed/NCBI

22 

Muller A, Homey B, Soto H, et al: Involvement of chemokine receptors in breast cancer metastasis. Nature. 410:50–56. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Pellegrin S and Mellor H: Rho GTPase activation assays. Current Protocols in Cell Biology. Bonifacino Juan S, et al: 38. John Wiley & Sons, Inc; Hoboken, NJ: pp. 14.8.1–14.8.19. 2008

24 

Wang J, Zhang X, Thomas SM, et al: Chemokine receptor 7 activates phosphoinositide-3 kinase-mediated invasive and prosurvival pathways in head and neck cancer cells independent of EGFR. Oncogene. 24:5897–5904. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Yang L, Liu F, Xu Z, Guo N, Zheng X and Sun C: Chemokine receptor 7 via proline-rich tyrosine kinase-2 upregulates the chemotaxis and migration ability of squamous cell carcinoma of the head and neck. Oncol Rep. 28:1659–1664. 2012.PubMed/NCBI

26 

Kakinuma T and Hwang ST: Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol. 79:639–651. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Ridley AJ: RhoA, RhoB and RhoC have different roles in cancer cell migration. J Microsc. 251:242–249. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Etienne-Manneville S and Hall A: Rho GTPases in cell biology. Nature. 420:629–635. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Routhier A, Astuccio M, Lahey D, et al: Pharmacological inhibition of Rho-kinase signaling with Y-27632 blocks melanoma tumor growth. Oncol Rep. 23:861–867. 2010.PubMed/NCBI

30 

Bernard O: Lim kinases, regulators of actin dynamics. Int J Biochem Cell Biol. 39:1071–1076. 2007. View Article : Google Scholar

31 

Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS and Condeelis JS: Cofilin promotes actin polymerization and defines the direction of cell motility. Science. 304:743–746. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Rattan R, Giri S, Singh AK and Singh I: Rho/ROCK pathway as a target of tumor therapy. J Neurosci Res. 83:243–255. 2006. View Article : Google Scholar

33 

Shimokawa H and Rashid M: Development of Rho-kinase inhibitors for cardiovascular medicine. Trends Pharmacol Sci. 28:296–302. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

February 2015
Volume 33 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xu, Z., Zheng, X., Yang, L., Liu, F., Zhang, E., Duan, W. ... Sun, C. (2015). Chemokine receptor 7 promotes tumor migration and invasiveness via the RhoA/ROCK pathway in metastatic squamous cell carcinoma of the head and neck. Oncology Reports, 33, 849-855. https://doi.org/10.3892/or.2014.3631
MLA
Xu, Z., Zheng, X., Yang, L., Liu, F., Zhang, E., Duan, W., Bai, S., Safdar, J., Li, Z., Sun, C."Chemokine receptor 7 promotes tumor migration and invasiveness via the RhoA/ROCK pathway in metastatic squamous cell carcinoma of the head and neck". Oncology Reports 33.2 (2015): 849-855.
Chicago
Xu, Z., Zheng, X., Yang, L., Liu, F., Zhang, E., Duan, W., Bai, S., Safdar, J., Li, Z., Sun, C."Chemokine receptor 7 promotes tumor migration and invasiveness via the RhoA/ROCK pathway in metastatic squamous cell carcinoma of the head and neck". Oncology Reports 33, no. 2 (2015): 849-855. https://doi.org/10.3892/or.2014.3631