Role of chemokine CX3CL1 in progression of multiple myeloma via CX3CR1 in bone microenvironments

  • Authors:
    • Akinori Wada
    • Aya Ito
    • Hirofumi Iitsuka
    • Koichi Tsuneyama
    • Takayoshi Miyazono
    • Jun Murakami
    • Naotoshi Shibahara
    • Hiroaki Sakurai
    • Ikuo Saiki
    • Takashi Nakayama
    • Osamu Yoshie
    • Keiichi Koizumi
    • Toshiro Sugiyama
  • View Affiliations

  • Published online on: April 28, 2015     https://doi.org/10.3892/or.2015.3941
  • Pages: 2935-2939
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Several chemokines/chemokine receptors such as CXCL12, CCL3, CXCR4 and CCR1 attract multiple myelomas to specific microenvironments. In the present study, we investigated whether the CX3CL1/CX3CR1 axis is involved in the interaction of the multiple myeloma cells with their microenvironment. The expression of CX3CR1 (also known as fractalkine) was detected in three of the seven human myeloma cell lines. CX3CL1‑induced phosphorylation of Akt and ERK1/2 was detected in the CX3CR1-positive cell lines, but not in the CX3CR1-negative cell lines. In addition, CX3CL1-induced cell adhesion to fibronectin and vascular cell adhesion molecule-1 (VCAM-1) in the human myeloma RPMI-8226 cell line. We also investigated whether a relationship existed between myeloma cells and osteoclasts that may function via the CX3CL1/CX3CR1 axis. Conditioned medium from CX3CL1-stimulated RPMI-8226 cells drastically increased the osteoclast differentiation. Collectively, the results from the present study support the concept of the CX3CL1‑mediated activation of the progression of the multiple myeloma via CX3CR1. Thus, CX3CR1 may represent a potential therapeutic target for the treatment of multiple myeloma in a bone microenvironment.

References

1 

Kyle RA and Rajkumar SV: Multiple myeloma. N Engl J Med. 351:1860–1873. 2004. View Article : Google Scholar : PubMed/NCBI

2 

Kristinsson SY, Landgren O, Dickman PW, Derolf AR and Björkholm M: Patterns of survival in multiple myeloma: A population-based study of patients diagnosed in Sweden from 1973 to 2003. J Clin Oncol. 25:1993–1999. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Brenner H, Gondos A and Pulte D: Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood. 111:2521–2526. 2008. View Article : Google Scholar

4 

Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Zeldenrust SR, Dingli D, Russell SJ, Lust JA, et al: Improved survival in multiple myeloma and the impact of novel therapies. Blood. 111:2516–2520. 2008. View Article : Google Scholar

5 

Baggiolini M: Chemokines and leukocyte traffic. Nature. 392:565–568. 1998. View Article : Google Scholar : PubMed/NCBI

6 

Raffaghello L, Cocco C, Corrias MV, Airoldi I and Pistoia V: Chemokines in neuroectodermal tumour progression and metastasis. Semin Cancer Biol. 19:97–102. 2009. View Article : Google Scholar

7 

Pistoia V, Corcione A, Dallegri F and Ottonello L: Lymphoproliferative disorders and chemokines. Curr Drug Targets. 7:81–90. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Trentin L, Miorin M, Facco M, Baesso I, Carraro S, Cabrelle A, Maschio N, Bortoli M, Binotto G, Piazza F, et al: Multiple myeloma plasma cells show different chemokine receptor profiles at sites of disease activity. Br J Haematol. 138:594–602. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Vallet S, Pozzi S, Patel K, Vaghela N, Fulciniti MT, Veiby P, Hideshima T, Santo L, Cirstea D, Scadden DT, et al: A novel role for CCL3 (MIP-1α) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function. Leukemia. 25:1174–1181. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A and Schall TJ: A new class of membrane-bound chemokine with a CX3C motif. Nature. 385:640–644. 1997. View Article : Google Scholar : PubMed/NCBI

11 

Umehara H, Bloom ET, Okazaki T, Nagano Y, Yoshie O and Imai T: Fractalkine in vascular biology: From basic research to clinical disease. Arterioscler Thromb Vasc Biol. 24:34–40. 2004. View Article : Google Scholar

12 

Fong AM, Robinson LA, Steeber DA, Tedder TF, Yoshie O, Imai T and Patel DD: Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med. 188:1413–1419. 1998. View Article : Google Scholar : PubMed/NCBI

13 

Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, et al: Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 91:521–530. 1997. View Article : Google Scholar : PubMed/NCBI

14 

Shulby SA, Dolloff NG, Stearns ME, Meucci O and Fatatis A: CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res. 64:4693–4698. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Andre F, Cabioglu N, Assi H, Sabourin JC, Delaloge S, Sahin A, Broglio K, Spano JP, Combadiere C, Bucana C, et al: Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann Oncol. 17:945–951. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Marchesi F, Piemonti L, Fedele G, Destro A, Roncalli M, Albarello L, Doglioni C, Anselmo A, Doni A, Bianchi P, et al: The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Res. 68:9060–9069. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Andréasson U, Ek S, Merz H, Rosenquist R, Andersen N, Jerkeman M, Dictor M and Borrebaeck CA: B cell lymphomas express CX3CR1 a non-B cell lineage adhesion molecule. Cancer Lett. 259:138–145. 2008. View Article : Google Scholar

18 

Ferrer A, Ollila J, Tobin G, Nagy B, Thunberg U, Aalto Y, Vihinen M, Vilpo J, Rosenquist R and Knuutila S: Different gene expression in immunoglobulin-mutated and immunoglobulin-unmutated forms of chronic lymphocytic leukemia. Cancer Genet Cytogenet. 153:69–72. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Nakayama T, Hieshima K, Izawa D, Tatsumi Y, Kanamaru A and Yoshie O: Cutting edge: Profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J Immunol. 170:1136–1140. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Hojo S, Koizumi K, Tsuneyama K, Arita Y, Cui Z, Shinohara K, Minami T, Hashimoto I, Nakayama T, Sakurai H, et al: High-level expression of chemokine CXCL16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Res. 67:4725–4731. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Manier S, Sacco A, Leleu X, Ghobrial IM and Roccaro AM: bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol. 2012:1574962012. View Article : Google Scholar : PubMed/NCBI

22 

Saitoh Y, Koizumi K, Sakurai H, Minami T and Saiki I: RANKL-induced down-regulation of CX3CR1 via PI3K/Akt signaling pathway suppresses Fractalkine/CX3CL1-induced cellular responses in RAW264.7 cells. Biochem Biophys Res Commun. 364:417–422. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Koizumi K, Saitoh Y, Minami T, Takeno N, Tsuneyama K, Miyahara T, Nakayama T, Sakurai H, Takano Y, Nishimura M, et al: Role of CX3CL1/fractalkine in osteoclast differentiation and bone resorption. J Immunol. 183:7825–7831. 2009. View Article : Google Scholar : PubMed/NCBI

24 

International Myeloma Working Group: Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: A report of the International Myeloma Working Group. Br J Haematol. 121:749–757. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Durie BG and Salmon SE: A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 36:842–854. 1975. View Article : Google Scholar : PubMed/NCBI

26 

Eychène A, Rocques N and Pouponnot C: A new MAFia in cancer. Nat Rev Cancer. 8:683–693. 2008. View Article : Google Scholar

27 

Morito N, Yoh K, Maeda A, Nakano T, Fujita A, Kusakabe M, Hamada M, Kudo T, Yamagata K and Takahashi S: A novel transgenic mouse model of the human multiple myeloma chromosomal translocation t(14;16)(q32;q23). Cancer Res. 71:339–348. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Murphy G, Caplice N and Molloy M: Fractalkine in rheumatoid arthritis: A review to date. Rheumatology. 47:1446–1451. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Nanki T, Urasaki Y, Imai T, Nishimura M, Muramoto K, Kubota T and Miyasaka N: Inhibition of fractalkine ameliorates murine collagen-induced arthritis. J Immunol. 173:7010–7016. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2015
Volume 33 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wada, A., Ito, A., Iitsuka, H., Tsuneyama, K., Miyazono, T., Murakami, J. ... Sugiyama, T. (2015). Role of chemokine CX3CL1 in progression of multiple myeloma via CX3CR1 in bone microenvironments. Oncology Reports, 33, 2935-2939. https://doi.org/10.3892/or.2015.3941
MLA
Wada, A., Ito, A., Iitsuka, H., Tsuneyama, K., Miyazono, T., Murakami, J., Shibahara, N., Sakurai, H., Saiki, I., Nakayama, T., Yoshie, O., Koizumi, K., Sugiyama, T."Role of chemokine CX3CL1 in progression of multiple myeloma via CX3CR1 in bone microenvironments". Oncology Reports 33.6 (2015): 2935-2939.
Chicago
Wada, A., Ito, A., Iitsuka, H., Tsuneyama, K., Miyazono, T., Murakami, J., Shibahara, N., Sakurai, H., Saiki, I., Nakayama, T., Yoshie, O., Koizumi, K., Sugiyama, T."Role of chemokine CX3CL1 in progression of multiple myeloma via CX3CR1 in bone microenvironments". Oncology Reports 33, no. 6 (2015): 2935-2939. https://doi.org/10.3892/or.2015.3941