Epigenetic targeting of glioma stem cells: Short-term and long-term treatments with valproic acid modulate DNA methylation and differentiation behavior, but not temozolomide sensitivity

  • Authors:
    • Gabriele Riva
    • Valentina Butta
    • Chiara Cilibrasi
    • Simona Baronchelli
    • Serena Redaelli
    • Leda Dalprà
    • Marialuisa Lavitrano
    • Angela Bentivegna
  • View Affiliations

  • Published online on: March 9, 2016     https://doi.org/10.3892/or.2016.4665
  • Pages: 2811-2824
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glioblastoma (GBM) is the most aggressive tumor of the central nervous system. GBM is a fatal tumor, incurable by conventional therapies. One of the factors underlying tumor recurrence and poor long-term survival is the presence of a cancer stem-like cell population, termed glioma stem cells (GSCs), which is particularly resistant to chemotherapy and radiotherapy and supports tumor self-renewal. The aim of the present study was to evaluate the impact and difference in effects of short-term and long‑term treatments with valproic acid (VPA), a histone deacetylase inhibitor, on seven GSC lines. We investigated for the first time the changes in the genome-wide DNA methylation profile and the differentiation behavior of GSCs induced by short-term and long-term VPA treatments. Moreover, we verified VPA sensitivity after long-term VPA pretreatment and, notably, the results provide evidence of a subpopulation more resistant to further VPA treatments. Finally, since short-term VPA treatment induced a reversal of the MGMT methylation status, we aimed to sensitize GSCs to temozolomide, the drug commonly used for this tumor, using this regimen. The overall data highlighted the heterogeneous behavior of GSC lines that is representative of tumor heterogeneity in GBM. The VPA effects were variable among these cell lines in terms of pro‑differentiating ability and DNA methylation switch. Here, we attempted to identify a suitable therapy for the eradication of the stem cell subpopulation, which is mandatory to achieve an effective treatment for this tumor. Differentiation-inducing and epigenetic therapies are the most promising approaches to affect the multiple properties of GSCs and, finally, defeat GBM.

References

1 

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Brandes AA, Franceschi E, Ermani M, Tosoni A, Albani F, Depenni R, Faedi M, Pisanello A, Crisi G, Urbini B, et al: Pattern of care and effectiveness of treatment for glioblastoma patients in the real world: Results from a prospective population-based registry. Could survival differ in a high-volume center? Neurooncol Pract. 1:166–171. 2014.

3 

Nduom EK, Hadjipanayis CG and Van Meir EG: Glioblastoma cancer stem-like cells: Implications for pathogenesis and treatment. Cancer J. 18:100–106. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C and Tavaré S: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA. 110:4009–4014. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Piccirillo SG, Combi R, Cajola L, Patrizi A, Redaelli S, Bentivegna A, Baronchelli S, Maira G, Pollo B, Mangiola A, et al: Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene. 28:1807–1811. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Esteller M: Epigenetics in cancer. N Engl J Med. 358:1148–1159. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Hatziapostolou M and Iliopoulos D: Epigenetic aberrations during oncogenesis. Cell Mol Life Sci. 68:1681–1702. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Nagarajan RP and Costello JF: Molecular epigenetics and genetics in neuro-oncology. Neurotherapeutics. 6:436–446. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Khan O and La Thangue NB: HDAC inhibitors in cancer biology: Emerging mechanisms and clinical applications. Immunol Cell Biol. 90:85–94. 2012. View Article : Google Scholar

10 

Song SH, Han SW and Bang YJ: Epigenetic-based therapies in cancer: Progress to date. Drugs. 71:2391–2403. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Cinatl J Jr, Cinatl J, Scholz M, Driever PH, Henrich D, Kabickova H, Vogel JU, Doerr HW and Kornhuber B: Antitumor activity of sodium valproate in cultures of human neuroblastoma cells. Anticancer Drugs. 7:766–773. 1996. View Article : Google Scholar : PubMed/NCBI

12 

Blaheta RA, Michaelis M, Driever PH and Cinatl J Jr: Evolving anticancer drug valproic acid: Insights into the mechanism and clinical studies. Med Res Rev. 25:383–397. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Van Lint C, Emiliani S and Verdin E: The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr. 5:245–253. 1996.PubMed/NCBI

14 

Chateauvieux S, Morceau F, Dicato M and Diederich M: Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol. 2010:4793642010. View Article : Google Scholar : PubMed/NCBI

15 

Bacon CL, O'Driscoll E and Regan CM: Valproic acid suppresses G1 phase-dependent sialylation of a 65 kDa glycoprotein in the C6 glioma cell cycle. Int J Dev Neurosci. 15:777–784. 1997. View Article : Google Scholar : PubMed/NCBI

16 

Knüpfer MM, Hernáiz-Driever P, Poppenborg H, Wolff JE and Cinatl J: Valproic acid inhibits proliferation and changes expression of CD44 and CD56 of malignant glioma cells in vitro. Anticancer Res. 18:3585–3589. 1998.PubMed/NCBI

17 

Chavez-Blanco A, Perez-Plasencia C, Perez-Cardenas E, Carrasco-Legleu C, Rangel-Lopez E, Segura-Pacheco B, Taja-Chayeb L, Trejo-Becerril C, Gonzalez-Fierro A, Candelaria M, et al: Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines. Cancer Cell Int. 6:22006. View Article : Google Scholar : PubMed/NCBI

18 

Das CM, Aguilera D, Vasquez H, Prasad P, Zhang M, Wolff JE and Gopalakrishnan V: Valproic acid induces p21 and topoisomerase-II (alpha/beta) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines. J Neurooncol. 85:159–170. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Van Nifterik KA, Van den Berg J, Slotman BJ, Lafleur MV, Sminia P and Stalpers LJ: Valproic acid sensitizes human glioma cells for temozolomide and γ-radiation. J Neurooncol. 107:61–67. 2012. View Article : Google Scholar

20 

Ryu CH, Yoon WS, Park KY, Kim SM, Lim JY, Woo JS, Jeong CH, Hou Y and Jeun SS: Valproic acid downregulates the expression of MGMT and sensitizes temozolomide-resistant glioma cells. J Biomed Biotechnol. 2012:9874952012. View Article : Google Scholar : PubMed/NCBI

21 

Chen CH, Chang YJ, Ku MS, Chung KT and Yang JT: Enhancement of temozolomide-induced apoptosis by valproic acid in human glioma cell lines through redox regulation. J Mol Med Berl. 89:303–315. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M, et al: Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell. 4:568–580. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Griffero F, Daga A, Marubbi D, Capra MC, Melotti A, Pattarozzi A, Gatti M, Bajetto A, Porcile C, Barbieri F, et al: Different response of human glioma tumor-initiating cells to epidermal growth factor receptor kinase inhibitors. J Biol Chem. 284:7138–7148. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Baronchelli S, Bentivegna A, Redaelli S, Riva G, Butta V, Paoletta L, Isimbaldi G, Miozzo M, Tabano S, Daga A, et al: Delineating the cytogenomic and epigenomic landscapes of glioma stem cell lines. PLoS One. 8:e574622013. View Article : Google Scholar : PubMed/NCBI

25 

Riva G, Baronchelli S, Paoletta L, Butta V, Biunno I, Lavitrano M, Dalprà L and Bentivegna A: In vitro anticancer drug test: A new method emerges from the model of glioma stem cells. Toxicol Rep. 1:188–199. 2014. View Article : Google Scholar

26 

Aouali N, Palissot V, El-Khoury V, Moussay E, Janji B, Pierson S, Brons NH, Kellner L, Bosseler M, Van Moer K, et al: Peroxisome proliferator-activated receptor gamma agonists potentiate the cytotoxic effect of valproic acid in multiple myeloma cells. Br J Haematol. 147:662–671. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Straussman R, Nejman D, Roberts D, Steinfeld I, Blum B, Benvenisty N, Simon I, Yakhini Z and Cedar H: Developmental programming of CpG island methylation profiles in the human genome. Nat Struct Mol Biol. 16:564–571. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Beissbarth T and Speed TP: GOstat: Find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics. 20:1464–1465. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Kanu OO, Hughes B, Di C, Lin N, Fu J, Bigner DD, Yan H and Adamson C: Glioblastoma multiforme oncogenomics and signaling pathways. Clin Med Oncol. 3:39–52. 2009.PubMed/NCBI

30 

Wardak Z and Choe KS: Molecular pathways and potential therapeutic targets in glioblastoma multiforme. Expert Rev Anticancer Ther. 13:1307–1318. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Zhang J, Stevens MF and Bradshaw TD: Temozolomide: Mechanisms of action, repair and resistance. Curr Mol Pharmacol. 5:102–114. 2012. View Article : Google Scholar

33 

Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, et al: MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 352:997–1003. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, et al: Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20:6969–6978. 2001. View Article : Google Scholar : PubMed/NCBI

35 

Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA and Klein PS: Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 276:36734–36741. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Osuka S, Takano S, Watanabe S, Ishikawa E, Yamamoto T and Matsumura A: Valproic acid inhibits angiogenesis in vitro and glioma angiogenesis in vivo in the brain. Neurol Med Chir (Tokyo). 52:186–193. 2012. View Article : Google Scholar

37 

Knüpfer MM, Pulzer F, Schindler I, Hernaíz Driever P, Knüpfer H and Keller E: Different effects of valproic acid on proliferation and migration of malignant glioma cells in vitro. Anticancer Res. 21:347–351. 2001.PubMed/NCBI

38 

Cameron EE, Bachman KE, Myöhänen S, Herman JG and Baylin SB: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 21:103–107. 1999. View Article : Google Scholar : PubMed/NCBI

39 

De la Cruz-Hernández E, Perez-Plasencia C, Pérez-Cardenas E, Gonzalez-Fierro A, Trejo-Becerril C, Chávez-Blanco A, Taja-Chayeb L, Vidal S, Gutiérrez O, Dominguez GI, et al: Transcriptional changes induced by epigenetic therapy with hydralazine and magnesium valproate in cervical carcinoma. Oncol Rep. 25:399–407. 2011.

40 

Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP, Herman JG and Baylin SB: A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet. 31:141–149. 2002. View Article : Google Scholar : PubMed/NCBI

41 

van Breemen MS, Wilms EB and Vecht CJ: Epilepsy in patients with brain tumours: Epidemiology, mechanisms, and management. Lancet Neurol. 6:421–430. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Sizoo EM, Koekkoek JA, Postma TJ, Heimans JJ, Pasman HR, Deliens L, Taphoorn MJ and Reijneveld JC: Seizures in patients with high-grade glioma: A serious challenge in the end-of-life phase. BMJ Support Palliat Care. 4:77–80. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Guthrie GD and Eljamel S: Impact of particular antiepileptic drugs on the survival of patients with glioblastoma multiforme. J Neurosurg. 118:859–865. 2013. View Article : Google Scholar

44 

Vecht CJ, Kerkhof M and Duran-Pena A: Seizure prognosis in brain tumors: New insights and evidence-based management. Oncologist. 19:751–759. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E and Herrera LA: Valproic acid as epigenetic cancer drug: Preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev. 34:206–222. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Dai J, Bercury KK, Ahrendsen JT and Macklin WB: Olig1 function is required for oligodendrocyte differentiation in the mouse brain. J Neurosci. 35:4386–4402. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Liu Z, Li H, Hu X, Yu L, Liu H, Han R, Colella R, Mower GD, Chen Y and Qiu M: Control of precerebellar neuron development by Olig3 bHLH transcription factor. J Neurosci. 28:10124–10133. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H, Pastorino S, Yang M, Hoffman RM, Kesari S, et al: Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA. 108:4274–4280. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Liu T, Liu PY, Tee AE, Haber M, Norris MD, Gleave ME and Marshall GM: Over-expression of clusterin is a resistance factor to the anti-cancer effect of histone deacetylase inhibitors. Eur J Cancer. 45:1846–1854. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Juengel E, Makarević J, Tsaur I, Bartsch G, Nelson K, Haferkamp A and Blaheta RA: Resistance after chronic application of the HDAC-inhibitor valproic acid is associated with elevated Akt activation in renal cell carcinoma in vivo. PLoS One. 8:e531002013. View Article : Google Scholar : PubMed/NCBI

51 

Milutinovic S, D'Alessio AC, Detich N and Szyf M: Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis. 28:560–571. 2007. View Article : Google Scholar

52 

Detich N, Bovenzi V and Szyf M: Valproate induces replication-independent active DNA demethylation. J Biol Chem. 278:27586–27592. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, Bertorelle R, Bartolini S, Calbucci F, Andreoli A, et al: MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 26:2192–2197. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Munoz JL, Rodriguez-Cruz V, Greco SJ, Nagula V, Scotto KW and Rameshwar P: Temozolomide induces the production of epidermal growth factor to regulate MDR1 expression in glioblastoma cells. Mol Cancer Ther. 13:2399–2411. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Munoz JL, Rodriguez-Cruz V, Greco SJ, Ramkissoon SH, Ligon KL and Rameshwar P: Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis. 5:e11452014. View Article : Google Scholar : PubMed/NCBI

56 

Munoz JL, Walker ND, Scotto KW and Rameshwar P: Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells. Cancer Lett. 367:69–75. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Tivnan A, Zakaria Z, O'Leary C, Kögel D, Pokorny JL, Sarkaria JN and Prehn JH: Inhibition of multidrug resistance protein 1 (MRP1) improves chemotherapy drug response in primary and recurrent glioblastoma multiforme. Front Neurosci. 9:2182015. View Article : Google Scholar : PubMed/NCBI

58 

Kitange GJ, Mladek AC, Carlson BL, Schroeder MA, Pokorny JL, Cen L, Decker PA, Wu W, Lomberk GA, Gupta SK, et al: Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin Cancer Res. 18:4070–4079. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Zighetti ML, Fontana G, Lussana F, Chiesa V, Vignoli A, Canevini MP and Cattaneo M: Effects of chronic administration of valproic acid to epileptic patients on coagulation tests and primary hemostasis. Epilepsia. 56:e49–e52. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

May 2016
Volume 35 Issue 5

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Riva, G., Butta, V., Cilibrasi, C., Baronchelli, S., Redaelli, S., Dalprà, L. ... Bentivegna, A. (2016). Epigenetic targeting of glioma stem cells: Short-term and long-term treatments with valproic acid modulate DNA methylation and differentiation behavior, but not temozolomide sensitivity. Oncology Reports, 35, 2811-2824. https://doi.org/10.3892/or.2016.4665
MLA
Riva, G., Butta, V., Cilibrasi, C., Baronchelli, S., Redaelli, S., Dalprà, L., Lavitrano, M., Bentivegna, A."Epigenetic targeting of glioma stem cells: Short-term and long-term treatments with valproic acid modulate DNA methylation and differentiation behavior, but not temozolomide sensitivity". Oncology Reports 35.5 (2016): 2811-2824.
Chicago
Riva, G., Butta, V., Cilibrasi, C., Baronchelli, S., Redaelli, S., Dalprà, L., Lavitrano, M., Bentivegna, A."Epigenetic targeting of glioma stem cells: Short-term and long-term treatments with valproic acid modulate DNA methylation and differentiation behavior, but not temozolomide sensitivity". Oncology Reports 35, no. 5 (2016): 2811-2824. https://doi.org/10.3892/or.2016.4665